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REPRESENTATION, MODELING AND RECOGNITION OF OUTDOOR SCENES

Martin A. Fischler and Robert C. Bolles
Principal Investigators

OBJECTIVE:

Our prilar¥ goal in this project is to advance the state of the art in scene
interpretation for autonomous systems that operate in natural terrain. In
particular, techniques are being developed for representing knowledge about
complex cultural and natural environments so that a computer vision system can
successfully plan, navigate, recognize, and manipulate objects and answer
questions or make decisions relevant to this knouledge.

APPROACH:

This work integrates advances in four separate technologies to achieve the
goal of providing a foundation for the design of highiy competent machine vision
systems capable of autonomous operation in the outdoor world.

First, stored knowledge (such as map data and object models) provides the basis
for invoking context, function, and purpose, in addition to the use of visually
observed geometric shape, to recognize scene objects.

Second, ue are developing compact and expressive representations for model ing,
and ultimately recognizing, objects encountered in the natural worlid,
Computational efficiency, and thus real time performance, is critically
dependent on using effective representations for both models and sensed data.

Third, global optimization techniques are being developed that require reasonable
amounts of computation, but which are expected to produce results beyond those
obtainable by local analysis methods.

Fourth, techniques are being developed that are able to simultaneously. or
incrementally, exploit multiple vieus of a scene in compiling 2 complete scene
wmodel. For example, in our previous work we have been able to demonstrate that
the integrated analysis of a motion sequence can be used to construct a
geometric scene model that is superior to a sequence of independent stereo
reconstructions.

PROGRESS:

This program builds on our previous ARPA research. Our initial results are
centered on the development of representations and associated methods for
rapidly modeling natural terrain {(from image sequences) at a leve! af
organization higher than that of the conventional dense array of depths. This
work Will provide the essential advance needed to turn raw geometric
measurements into timely information usable by robotic navigation and planning
systems. UWork is also progressing on two additional problems: modeling compact
3-0 objects from their projected 2-D contours, and the problem of recognizing
ingorta:t classes of natural and man-made objects -- especially roads, trees,
and rocks.

SUMMARY OF RECENT ACCOMPLISHMENTS:

-Developed an approach for integration of information acquired from multiple
views of a scene into a description of scene geometry. he approach uses a neu
class of geometric primitives which allous easy expression of knouwn constraints
and observed data, and_also allous the use of practical optimization based
solution technigues. This work will provide an effective uay of allouwing a
robotic system to incremental ly build a progressivelx more accurate and complete
model of the environment in which it is operating. paper describin? this
work, intended for journal publication, has been completed and is included in
this report as Appendix A.; also see the detailed discussion of this topic
provided in a follonwing section.

-Made a significant neu advance in the long-standing problem of duplicating
human per formance in recovering 3-0 models of terrain and man-made objects from
qualitative and imprecise line drauings (e.g., of terrain elevations as in an




approximate and uncalibrated contour map, or building edges as in a single
approximate projection of the corresponding wire-frame). This work can greatlg
simplify communication probiems betueen man and machine in such applications as
robotic mission planning and in construction of databases for use in robotic
navigation. A paper describing this work has been published in the International
Journal of Computer Vision ("An optimization based approach to the
intergggtation of single line drauings as 3-D wire frames,” [JCV 9(2):113-136,
Nov 1392): a reprint is enclosed as Appendix B. On-?oing work has led to (new)
additional results of both theoretical and practical importance; these neu
results will be described in a later report.

-The problem of automatically recognizing objects appearing in images of the
outdoor worid has praven to be extremely difficult, in par?. because in additiaon
to all the other difficulties of object recognition, uwe must nou also contend
sith the tack of explicit shape models. UWhile most of the current (successful)
computer-based recognition approaches rely on explicit knouledge of shape,
rocks, trees, and other natural objects cannot be successfully described in this
Hay: even such generic man-made objects as roads, bridges, and buildings are
more likely to satisfy functional constraints rather than being exemplars of
some geometric blueprint. In order to replace explicit shape with a more
?eneral way of describing natural objects (and complex man-made structures), a
arge number of geometric primitives have been proposed that are also suitable
for detection by automatic image analysis algorithms (e.g., edges, textures,
fractais). The result of much of this past work is that, while often promising,
the techniques are not sufficiently reliable to provide a basis for the
knouledge-based analysis needed to compiete the recognition task. What is
required are a feu techniques than can very reliably organize the pixel-level
image data as a basis for higher level analysis. Finding the appropriate
combination of low-level data-description, and associated extraction techniques,
is thus a key problem in machine vision and of our primary concerns in this
project. In addition to our work relevant to this topic discussed above, wWe have
focused on extracting coherent line (as distinct from edge) features in single
gray-level images. We note that a line sketch of some object or scene is often
sufticient to depict the imaged information in a very compact way. Tuo
techniques have emerged from this uwork that appear to meet the criterion of
generality and robustness. The first is a generic Wway to find candidate line
structure in an image; this work wWill be described in a later report. The
second is 3 way to organize such data into Eerceptually coherent and
semantical ly meaningful units. In Appendix C of this report we describe our
progress in the design of a curve partitioning technique that is extremely
robust in achieving the perceptual organization task; uwe also describe hou this
technique can be applied to the problem of road delineation in aerial images.

DETAILED DISCUSSION OF RECENT WORK ON GEOMETRIC
RECONSTRUCTION FROM MULTIPLE VIEUS:

To reconstruct object surfaces, one can start with a number of measuring
techniques, for example laser rangefinding, stereo or 3D scanners, all of which
provide raw information about the location of points in space. These points,
houever, often form potentially noisy "clouds” of data instead of the surfaces
one expects.

Deriving the surfaces from such data is a difficult task because:

-the 3D points may form a very irregular sampling of the space,

-thay may have been produced by several sensors or derived from several
viewpoints so that it becomes impossible to Work only in the
imaging plane of any one sensor,

-several surfaces can overlap; simple interpolation uill not work,

~-the sensors and algorithms make mistakes that must be properiy dealt with.

In this research effort, ue address the problem of determining the 3-0 shape and
material properties of surfaces by combining the information provided b¥ active
or passive ranging techniques with that present in multiple 2-D intensity

images. As discussed in our previous reports, ue are investigating tuwo different
approaches, the first based on local surfaces and the second on global ones.

At present, most of our efforts have been devoted to the global surface
approach. It relies on hexagonal triangulations that can be deformed to recover
both the geometry and physical properties of surfaces of interest.




Sur face Geometry

ven camera models for the images being analyzed, the corresponding projections
' the 3-D surface points appearing in the images can be computed and, assuming
'# usual stereo assumption, must have comparable grey levels. Our algorithm
itimizes the placement of surface vertices to minimize the overall difference

) grey levels uwhile preserving surface smoothness. The actual criterion ue use
} @ linear combination of the sums of the variance of grey levels across images
d of the sums of the surface curvatures at the vertices. HWe use a
|n;ugata—qradient descent algorithm embedded in a continuation method to

irform the optimization: we first optimize with a strong smoothness

mstraint; ue then reduce the constraint progressively.

rcause our surfaces are 3-D objects, ue can directly determine the presence of
1dden surfaces and deal effectively with occlusions. In order to detect those
idden_surfaces in an effective manner, ue have implemented the algorithm to run
v an SG] machine and exploit the machines z-buffering capabilities.

» far, in most of our experiments, uwe have used re$u|ar grids and uniform
roothness constraints. hile this is appropriate for surfaces whose properties
main relatively constant, this is suboptimal for more compliex surfaces that

i be more effectively handled using triangulated irregular networks. The
elatively smooth parts of such surfaces should be represented by large patches
nile the rougher parts are better described by finer and less constrained
~iangulations. UWe have made progress in implementing such irregular netuorks

4 allowing some of the regular facets to be subdivided as required by the
ur-face geometry.

) Physical Properties

any natural surfaces can be modeled by a Lambertian reflectance model whose
tbedo depends on the corresponding ph*sical sur face properties. Recover ing

his albedo is therefore an important tirst step touwards the goal of analyzing
hase physical properties and potentially segnenting regions of interest.

niike traditional "shape from shading” approaches that work in image space and
ssume constant albedo, our technique allous us to assign different albedoes to
he facets of the derived triangulation. HWe can then optimize the values

ssigned to these albedoes and also find {or use the knoun) location of the

;gh source to maximize the similarity betueen the shaded image derived from our
els and the real images.

e are perfornin? exper iments with the above method for computing albedo given
urfaces originally derived using stereoc. The objective function we optimize
nforces albedo smoothness while minimizing intensity difference between the
haded images and the real ones. To make this approach fully general, we will
ntroduce albedo discontinuities to account for abrupt changes in surface
aterial type. HWe uill also attempt to determine those classes of natural
bjects and terrain types for which the Lambertian model is appropriate by
xaainin? the variance in intensity across images of the same scene acquired
rom different vieuwpoints.

wr ultimate goal in the above two tasks is to be able to optimize

ilultaneousl¥ the vertex positions and the surface albedoes in order to compute
urface geometry and photometry. Our current focus in this task is to combine
he stereo objective function With the photometric one in order to achieve a
ore complete description of the scene.

) lmplementation and Testing

n the past few months we have refined and tested our method for recanstructing
oth ths shape and reflectance properties of physical surfaces from the
nformation present in mulitiple images. We have, so far, considered tuwo classes
f information. The first class contains the information that can be extracted
rom a single image, such as texture ?radients. shading, and occlusion edges.

e take advantage of the fact that multiple images enhance the utility of this
ype of information by allowing for consistency_checks across the images as wel |
s the use of averaging to improve precision. The second class contains
nformation that require at least tuo images for its extraction, such as the
spth of corresponding points found in two input images through the use of

terec triangulation.

ur surface reconstruction method uses an object-centered representation,
pecifically, a hexagonally-connected 3-D mesh of vertices with triangular




facets. Such a representation accommodates the two classes of information
mentioned above, as well as multiple images (including motion sequences of a
rigid object) and self-occlusions. We have chosen to model the surface material
using the Lambertian reflectance modei with variable aibedo, though
generalizations to specular surfaces are possible. Consequentl¥. the natural
choice for the monocular information source is shading, uwhile intensity is the
natural choice for the image feature used in multi-image correspondence. Not
only are these the natural choices uhen we are able to assume a Lambertian
reflectance model, they are complementary: intensity correlation is most
accurate wherever the input images are highly textured, and shading is most
accurate when the input images have smooth intensity variation. gince He uWish
to deal uith surfaces with non-uniform albedo, We have developed a new approach
to incorporating shading information that uses the variation in computed albedo
from facet to facet as the indicator of a correct surface reconstruction.

We use an optimization approach to reconstruct the surface shape and its
material properties from the input images. That is, we alter the shape and
reflectance properties of the surface mesh so as to minimize an objective
function, given an initial surface estimate provided by other means, such as a
standard stereo algorithm. The objective function is 3 |inear combination of
an intensity correlation component, an albedo variation component, and a surface
smoothness component. The first tuwo components are a function aof the
intensities projected onto the triangular facets from the input images (taking
occlusions into account), and are uweighted according to the amount of texture in
the intensities, for the reasons mentioned in the previous paragraph. The
geometric smoothness component is slouly decreased during the optimization
process to allow for an accurate estimate of the surface shape and reflectance.

We have implemented an algorithm employing these three terms and have per formed
extensive experiments usin¥ synthetic images as well as real aerial and face
images. The strengths of the approach include:

- The use of the 3-D surface mesh allows us to deal uwith self-occlusions and thus
effectively merge information from several potentially very different vieupoints
to eliminate "blind-spots.”

-- By combining stereo and shape from shading, and weighing appropriately the
reliability of their respective contributions, we can obtain results that are
better than those produced by either technique alone.

-- Using the facets to perform the stereo computation frees us from the
constant-depth assumption that standard correlation-based stereo technigues
make. It becomes possible to recover accurately the depth of sharply sloping
surfaces (such as that of a sharp ridgel.

-- The shape from shading component does not make a constant-albedo assumption
unilike most shading algorithms. Instead, ue only make the weaker and much more
general assumption that albedoes vary slouly across textureless areas.
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An Optimization-Based Approach to the Interpretation of Single Line
Drawings as 3D Wire Frames
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Line drawings provide an effective means of communication about the geometry of 3D objects. An understanding
of how to duplicate the way humans interpret line drawings is extremely important in enabling man-machine com-
munication with respect to images, diagrams, and spatial constructs. In particular, such an understanding could
be used to provide the human with the capability to create a line-drawing sketch of a polyhedral object that the
machine can automatically convert into the intended 3D model.

A recently published paper (Marill 1991) presented a simple optimization procedure supposedly able to duplicate
human judgment in recovering the 3D “wire frame” geometry of objects depicted in line drawings. Marill pro-
vided some impressive examples, but no theoretical justification for his approach. Here, we introduce our own
work by first critically examining Marill’s algorithm. We provide an explanation for why Marill’s algorithm was
able to perform as well as it did on the examples he presented, discuss its weaknesses, and show very simple
examples where it fails. We then provide an algorithm that improves on Marill’s results. In particular, we show
that an effective objective function must favor both symmetry and planarity—Marill deals only with the symmetry
issue. By modifying Marill’s objective function to explicitly favor planar-faced solutions, and by using a more
competent optimization technique,- we were able to demonstrate significantly improved performance in all of the
examples Marill provided and those additional ones we constructed ourselves. Finally, we examine some questions

relevant to the implications of this work for understanding the human ability to interpret line drawings.

1 Introduction

The interpretation of line drawings has been an impor-
tant focus for research in machine vision since the
field’s inception. There seems to be little question that
human subjects can easily recover 3D models from 2D
line drawings depicting many classes of objects. One
such class of special interest has been called the “blocks
world.” This class consists primarily of polyhedral
solids in 3D Euclidean space and the projections of the
visible edges of these objects onto a 2D plane (which
we call the line drawing). Given a single line drawing
of a blocks world scene, normal human subjects will
usually arrive at the same 3D interpretation, even
though there may be a very large number of possible
3D objects that could have produced the given drawing.

Beginning with the work of Guzman in 1968, there
has been a concerted effort by vision researchers to

develop an algorithmic procedure that could duplicate
human performance in interpreting line drawings, at
least with respect to blocks world objects. A signifi-
cant body of work in this area was produced by such
prominent scientists as Clowes (1971), Huffman (1971),
Waltz (1972), Mackworth (1973), Kanade (1980), Draper
(1981), and Sugihara (1982, 1984). However, the prob-
lem as originally formulated, devising a procedure for
recovering psychologically plausible 3D models from
line drawings, remains unsolved. (A psychologically
plausible reconstruction of a line drawing is the one
that virtually all people will accept.)

The earliest work by Guzman was heuristic in
nature, failed in many cases where humans had no trou-
ble in finding appropriate interpretations, and did not
actually return a 3D model, but rather partitioned the
scene into separate polyhedral objects. Clowes, Huff-
man, Waltz, Mackworth, and Kanade formalized and
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extended the work of Guzman, but did not solve the
original problem. They were (usuaily) able to label the
edges of the line drawing to correctly reflect a consis-
tent 3D interpretation if one existed, or could assert
that the drawing did not correspond to a realizable
blocks world scene. Mackworth and Kanade explicitly
exploited the planarity of the faces of blocks world and
“Origami” objects (by employing a “‘gradient space”
representation) to accomplish a form of semiquantitative
recovery. In addition to consistent edge labeling, they
could also constrain the relative orientation of the faces
of the target 3D model. The labels could describe the
edges as being convex, concave, occluding, and so
forth, but still. for the general case, no explicit 3D
model was returned (without introducing additional
oomtralints)andthealgoridlmswouldmakeoccasioml
errors.
In a series of papers, Sugihara reformulated the
of polyhedra (both with and without hidden lines re-
moved) in purely algebraic terms. He required as in-
put a specification of the vertexes defining each of the
individual planar faces of the polyhedra, and also re-
quired that the implied line drawing be a general-
position projection of the polyhedra. With this approach
he succeeded in providing an algebraic criterion as a
necessary and sufficient condition for a line drawing
to represent a physically realizable polyhedral object.
He could also constrain the space of feasible solutions,
and obtain a unique solution if enough additional con-
straints were provided. These additional constraints
were obtained from information beyond that provided
by the line drawing (e.g., shading or texture informa-
tion). Sugihara’s work was an important advance, but
again it fell short of the original goal. It will rarely be
the case that a unique reconstruction is implied by the
line drawing, and thus the primary objective of duplicat-
ing human performance in this regard is not met.’
Our motivation for writing this article was supplied,
in part, by a recent publication authored by T. Marill
(1991). He refocused on the original problem of human
interpretation of single line drawings as 3D structures;
he did not restrict his universe to blocks world objects
nor did he demand that the line drawings be complete.
The surprising thing about his work was that he used
in optimization approach involving (seemingly) an
tlmost trivial objective function, and the simplest
rossible descent algorithm to find a solution, and yet
srovided examples of reconstructed objects that were,
mtuitively, extremely good. (Figure 1, examples A

through I, shows the line drawings used in Marill’s ex-
periments.) However, his paper provided no justifica-
tion for why the algorithm should work, and thus no
basis for judging its generality or insight into how it
could be improved (should this be desirable).

The first reference we have found that presents the
case for choosing between various interpretations of a
line drawing based on an objective function is Hochberg
and McAlister (1953). In their paper, they “showed that:
(1) some variants of the Necker cube are more likely
to be described as 2D figures, and some are more likely
to be described as 3D; and (2) these differences could
be predicted by an objective and plausible coding
scheme. Within this scheme, the economy of descrip-
tion was assessed by (among other measures) the
number of lines and angles contained within the coding.
Thus, the costs and benefits of 2- versus 3-D interpreta-
tions could be assessed. Figures that could be coded
more simply under a depth interpretation were, in fact,
seen in depth; those that could not be simplified in this
way were seen to lie in the picture plane” (Pomerantz
& Kubovy 1981, pp. 439-440).

Barrow and Tenenbaum (1981) suggested ideas
similar to Marill’s for interpreting line drawings (both
for simple closed curves and polyhedra), but did not
pursue the ideas in greater depth. More recently, Bar-
nard and Pentland (1983) and Pentland and Kuo (1990)
have pursued Barrow and Tenenbaum’s approach for
simple curves and line drawings of surfaces by finding
the smoothest curve (or surface) corresponding to the
line drawing.

In this article we introduce our own work by first
critically examining Marill’s algorithm. We provide an
explanation for why Marill’s algorithm was able to per-
form as well as it did on the examples he presented,
discuss its weaknesses, and show very simple examples
where it fails (figure 1, examples J through N). We then
provide an aigorithm that improves on Marill’s resuits
for all nine of his examples, and also successfully deals
with the simple cases where Marill fails. Finally, we
examine some questions relevant to the implications of
this work for understanding the human ability to inter-
pret line drawings.

We see the work described here as being of both
theoretical and practical interest. The practical utility
of this work is its relevance to man-machine commun-
ication about 3D structures via line drawings—in par-
ticular, providing the human with the capability to
create a line-drawing sketch of a polyhedral object that
the machine can automatically convert into the intended

.
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Cube Solid Box Square With X Tetrabedron
Example A Exampile B Example C Example D
Table Empty Box Double Pyramid Staircase
Example E Example F Example G Example H
All of
Mavill’s
Examples
&=
Soroe of
Our Additional
Asymmetric Solid h‘::h' Hexagonal Prism Hexagonal Plate
Example 1 Example } Example K
Polygonal Plates “Truncated Box Hinge Impossible Pyramid
Example L Example M Example N Example O

Fig. 1. The line drawings examined in this article. Examples A through I are taken from Marill's paper. Examples J through N are line drawings
introduced here for which Marills’ algorithm failed to recover a phychologically plausible 3D model. Example O is a line drawing for which

a psychologically plausible 3D model is not feasible.

3D model. Deficiencies in providing a complete theory
are not fatal, since auxiliary information can always be
supplied interactively to resolve ambiguities, but the
underlying theory should reduce this “side communica-
tion” to a minimum.

2 Marill’s MSDA Algorithm

Marill’s algorithm consists of two components, an ob-
jective function and a simple descent optimization pro-
cedure for finding a local minimum of this objective
function. The objective function is simply the standard
deviation of all of the angles (SDA) in the recovered 3D

object with respect to their common mean. Marill calls
the minimization of the SDA the MSDA principle.
The input line drawing is specified as a set of points
(vertexes) and lines; each point is represented by an
(x, ) coordinate pair, and each line is represented by an
integer pair corresponding to the sequence numbers of
the two points it joins. The representation of the recov-
ered 3D object involves supplying a third (z) coordinate
for each of the originally specified points. This is what
we call the orthographic extension of the line drawing.?
It is actually a wire frame rather than a solid object.
To evaluate the objective function for a given pro-
posed solution, every pair of lines terminating on a
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point (as defined in the input specification) is con-
sidered to form a separate angle. Thus, if five lines ter-
minate on the same point, every potential 3D solution
contains ten angles at this point that contribute to the
objective function. Note that the intersection, between
two lines that happen to cross at intermediate points
of their extent in the line drawing, is not treated as a
vertex, and does not contribute to the objective func-
tion (even if the lines were to lie in the same plane in
the 3D reconsiruction). Similarly, two distinct vertexes
can have the same (x, y) coordinates in the line draw-
ing, but then the line segments terminating on the
distinct vertexes do not interact to form angles (even
if the vertexes coincide in the 3D reconstruction).

Thus, given a line drawing with n vertexes, each
possible orthographic extension is represented as a z
vector having n components; the corresponding angles
and SDA are computed to evaluate the proposed solu-
tion. Marill uses a descent technique to search for a
best answer, recognizing that this is simply a heuristic
and that this approach will find only a single local
minimum of his objective function. The input object
has all of its z values initially se¢ to zero; that is, it is
a flat object lying in the (x, y) plane. At each stage in
the search, the SDA of the current z vector is computed
and the program then looks at the children of the cur-
rent vector. These 2n children are all of the vectors one
step size away from the current vector, and are formed
by both adding and subtracting a specified value (Az)
to each of the n components in the current z vector.
The value of the SDA is computed for each of these
2n children, and the child with the minimum SDA is
selected as the new current vector. This process is
repeated until no improvement in the SDA is obtained,
and the resulting z vecto. is returned as the solution
for the first of three rounds of descent. Each additional
round uses a smaller Az and begins with the result of
the preceding round. Marill experimentally found ef-
fective values of Az for his three rounds to be 1, 0.5,
and 0.1.

Figure 2 shows a line drawing, its internal represen-
tation as described above, and the reconstructions us-
ing Marill’s algorithm and the algorithm we describe
in section 3.

In the top left window of the figure is the input line
drawing (with the vertexes numbered for reference by
the written representation below). The four windows
on the top right show two views of Marill’s reconstruc-
tivn and two views of our reconstruction. In the mid-
dle of the figure is a table showing the internal represen-

tation of the input line drawing. In the first row are the
(x, y) coordinates of the vertexes, in the order shown
on the drawing. In the second row are the integer
pairs representing the lines in the drawing. In the third
row are the sequences of vertexes corresponding to the
planar faces derived according to the rules of appen-
dix A (see section 3). The reconstructions are discussed
in section 3.3,

2.1 Marill’s Examples

Marill described the application of his algorithm to ex-
amples A through I of figure 1. We categorize these
examples along the following dimensions (based on the
appearance of the input drawing and on the character-
istics of the recovered 3D object):

a. —Three-dimensional [A B D EF G H ]]

—Flat [C]

b. —Blocks world (planar-faced solids with occluded
edges not rendered) [B H I]

—Origami (planar-faced, possibly hollow) [C F}

—Wire frame of blocks world object (all edges of
a blocks world object are given, and additional
lines between vertexes of a planar face may be
added) [A D G]

—Restricted wire frame (every closed circuit of
lines, without interior lines in the given input
representation, corresponds to a planar face) [E]

—Nonplanar wire frame (none of the above)

c. —Symmetric [A B C E G H]

—Asymmetric [D F I]

d. —All angles (approximately) equal [A B E F H]

—A few distinct but mostly repeated angles (C G 1]

—Mostly unequal angles [D]

For the purposes of our discussion, we use Marill’s
categorization and augment it with our own subjective
evaluation where we disagree or need to add additional
attributes to those Marill provides. It is important to
remember that Marill always returns a wire frame as
his solution, regardless of the categorization of the ob-
ject. Thus, we would call the wire frame of a blocks
world object a correct solution if it was a geometric-
ally correct representation of the 3D geometry of the
edges of the psychologically plausible blocks world ob-
ject whose orthographic projection corresponded to the
input line drawing, even though the wire frame does
not provide an explicit represuniation of the grouping
of lines into faces, and so forth.
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Marill’s Reconstruction

Hexagonal Prism
Example J

Qur Reconstruction

Lines | 28)(39)(410) (5 11
Faca (111 X 28740 30 SRS A O NA S T OIS 08 IO TZ3 A8 NETETI0TH]
% Lengths | Angles (Mean / Range) | SDA® DP_|
St | 235121300000 1mr |1949]  onnprme | 0060923 | 0000000
Recoesirn c.tlon -g:gg g.';: j::? :11:;28 ::.'31: 8:;12 1.0t 34 5t 1112 0.110060 | 0.044710
Recomtonction 199150104098 047131 | 10*39 25.0 4 1225 0.061289 | 0.000000

Fig. 2. Example J. This line drawing was created by orthographically projecting a specific 3D wire frame object. In this case, the object was
a regular hexagonal prism. Although arbitrary line drawings can be used as input 10 the reconstruction algorithms described in this article
(with grester or lesser success in recontruction), all of the examples introduced here were created by starting with specific 3D objects. The
panels in the upper right show two views of the object reconstructed by Marills’ algorithm. The first view is of the object rotated about the
vertical axis by 30 degrees, and the second is of the object rotated about the horizontal axis by 90 degrees. The two panels in the lower right
show two views of the object reconstructed by our algorithm. The table below this is the internal representation of the line drawing used by
the reconstruction algorithms. Note that intersections such as those between lines (1 7) and (2 3) are not represented. Marill’s algorithm uses
only the first two components of this representation. The third component (faces) is derived from the line drawing using the algorithm de-

3

1

scribed in section 3.1. The table at the bottom shows the results of the reconstructions in written form.

Examples A, B, E, F, and H can all be visualized as
approximately equiangular three-dimensional objects.
That is each of the objects has an equiangular 3D wire
frame as a psychologically plausible solution. Since
these equiangular solutions exactly satisfy Marill’s
minimum standard deviation of angles (MSDA) criter-
jon, it is obvious why Marill’s objective function should
prefer what we accept as the correct solutions in these
cases. In the other four cases, supposedly representative
examples of the ability of Marill’s algorithm to deal with
complicated structures having unequal angles, reason-
ably correct solutions are also recovered, and it is this
performance we wish to understand.

2.2 The Performance of the MSDA Principle

Given its overall simplicity, it would be quite remark-
able if the MSDA principle generally converged to a
psychologically plausible reconstruction. Unfortunately,
it is rather easy to find examples where this is not the
case, contrary to Marill’s implied competence for the
principle.

Examples J through N of figure 1 are line drawings
for which Marill’s algorithm converged to solutions that
are clearly psychologically implausible, even though
these drawings are not significantly more complicated
or more asymmetric than the examples that Marill used

#
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0
Marill’s Reconstruction
2
1
Hexagonal Plate
= -
Our Reconstruction

0.96 -0.27) (0.24 -0.89) (-0.72 -0.61) (-0.96 0.27) (-0.24 0.89) (0.72 0.61
3

Pomnts |
Tines 1(01)(13) 23) G4 (45) (50
aces [(012348)
Ze Lengths | Angles (Mean / Range) [ SDA” DP
Original 0.00 0.32 0.24-0.15-0.48-0.40 | 1.0to 1.0 120.0 0.000000 | 0.000000
Object 00 0.32 0.24-0.15-0.48 040 | 1.0to 1. 120.0 to 120.0 : :
——Meilc 1163
Recomstrion | 000 0.22-0.12 000 0.22-0.12 | 09t0 1.1 62 g 0.000000 | 0.030363
Our 1 1200
Recomtiuction | 000 0.34 0.28-0.11-043-038 | 1010 1.0 1106 08 04 0.000029 | 0.000000
Rg. 3. Example K.

(figures 2, 3, 4, 5, and 6 illustrate both Marill’s
reconstructions and our reconstructions, as described
in section 3). In Examples J and K it would appear that
the fault could lie with Marill’s use of a descent
algorithm because the SDA of the psychologically
plausible answer is less than or equal to the SDA for
the solution Marill actually obtains. Thus, one can
argue that a more competent global search strategy
could have found the psychologically plausible answer
using the same objective function. However, Examples
L, M, and N are line drawings for which the SDA of
Marill’s solution is significantly lower than that of the
psychologically plausible solution. Thus, the MSDA
principle is clearly not adequate t reliably handle even

Before discussing ways of augmenting the MSDA
principle to obtain a more competent principle and
algorithm, we attempt to explain the performance of

MSDA for line drawings depicting objects that are not
equiangular.

2.3 Evaluating the Performance of the MSDA Principle

It is not immediately obvious why the MSDA principle
should prefer a psychologically plausible answer if the
object depicted in the line drawing contains two or more
significantly different angles (e.g., C, D, G, 1, and J).
Marill offers no explanation for this phenomenon, and
thus no way to judge the conditions under which his
algorithm should be expected to succeed or fail. In this
section we provide a partial explanation for cases (such
as C, G, J, K, and L) that have critically important
attributes—the psychologically plausible reconstruction
is a 3D planar-faced object whose faces are either
equiangular or form ‘“complete-star” configurations
(see appendix B).
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Marill’s Reconstruction

0 Ol—

Our Reconstruction

01234%56 760 10)

Foints 3.24 -0.80) (2.28 -0.61) (2.04 0.27) (2.76 0.89) (3.72 0.61
i (01)(12)(23)(34)(40) (56) (67) (78)(89) (9 10) (10 5)
Facen

—

Zs

000 029 0.84 1.06 047 0.47
0.15 0.23 0.63 0.95 0.87

0.00 030 0.93 1.04 0.46 0.00
0.31-0.24 0.00-0.31 0.24

0.00 0.00 0.00 0.00 0.00 0.08
041 0.35-0.04-0.36 -0.30

Lengths | Angles (Mean [ Range) | SDA® DP

10012 1080 23200 0.010876 | 0.000000
09012 orr s | 0.000005 | 0.165852
10t 12 o150 T4 0.018157 | 0.000000

Fig. 4. Example L. Note that Marill’s unacceptable reconstruction has an SDA that is significantly lower than that of the psychologically
plausible original object. Thus, the MSDA principle itself has failed in this instance.

To establish the role played by the above geometric
attributes, we define the planar orthographic extension
of a simple closed 2D circuit in a line drawing to be
any orthographic extension for which the correspond-
ing 3D contour is planar. If a line drawing contains
more than one simple closed 2D circuit, then a planar
orthographic extension of the entire line drawing ex-
ists if we can cover the line drawing with a set of sim-
ple closed 2D circuits such that (a) every angle in the
drawing is included in at least one circuit, and (b) each
circuit projects to a 3D planar contour.’

In appendixes B, C, and D, we provide a number
of theorems that are pertinent to understanding the ef-
fectiveness of the MSDA principle applied to planar
orthographic extensions. The main theorem, appendix
D, asserts that solutions with certain symmetries cor-
respond to the global minimum of the SDA over all
planar orthographic extensions (the specific symmetry
condition we examine is that all faces must either be

equiangular or form complete-star configurations).
Consequently, if there were some way to consider
as possible solutions only the planar orthographic ex-
tensions of a line drawing (such as the psychologically
plausible solutions for examples A, B, C, G, J, K, and
L), these solutions would be global minima of the SDA
because of the angular symmetry they exhibit. We show
in example L that Marill’s algorithm is not constrained
to search only for planar solutions; while it will also
find solutions with nonplanar faces that have lower
SDAs then the planar solutions, there is suil the
possibility that MSDA shows at least a weak inherent
preference for planarity. While we cannot completely
rule out this possibility, it appears that the geometric
constraints inherent in the specific examples Marill
selected, rather than MSDA itself, are largely respon-
sible for finding planar-faced solutions. Specifically,
triangles in the line drawing will always produce planar
faces in the orthographic extension, and as we prove
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9 8
3
2
S Marill’s Reconstruction
1
Truncated Box
Example M
Our Reconstruction

-0.00 .8 17

{0.18 X .99 0.38
0.66 0.63) (0.53 1.06) (0.20 1.06
Lines 01)(1 4) (4 7

' ) I m
Faces | (050 4)(1056)2167)(3278Y4080)(4380)01234) (56789

o | 10 o ossons o [08410]  goqiorsso | 0TS |ooeon
Recomsiracion | o7 008 018 o1 o Lo 04w10] gl o | 004TER | 0.04ker
Reconstesction | 0.4 088 0.48 018 - | 041010 807101322 | 0050677 | 0.000000

Fg. 5 Example M. Note that our reconstruction has a slightly lower SDA than that of the original object, indicating the preference of our

sigorithm for equisnguiar faces.

in appendix B, a closed four-sided polygonal space
curve with 90-degree angles at each vertex will always
be a planar configuration. Since in Marill’s examples
listed above, ail the faces satisfy these two geometric
symmetry are present in the computed solutions.

Marill offers only two examples (D and I) that are
not clear instances of the above analysis (all angles
equal, or symmetric planar faces). His solution for ex-
ample 1 is at least questionable since it does not recover
the wire frame of a polyhedral solid (our algorithm
finds such a solution; there is a further discussion of
this subject in sections 3.3 and 4). However, this solu-
tion has almost all of its angles equal to 90 degrees,
and g0 it needs no further explanation if we accept it
" a8 cofrect.

Marill’s solution to the asymmetric drawing of ex-
ampie D looks very reasonable; it has all its angles fair-
ly well distributed between 40 and 70 degrees, and we
have not found a more symmetric (equiangular) ortho-

graphic extension for this line drawing. However,
because the input line drawing is a completely con-
nected set of triangular faces, all solutions are con-
strained to have planar faces. Thus, a large range of
psychologically plausible objects is accessible to any
reasonable algorithm.

In summary, there is an understandable reason why
Marill’s MSDA principle will sometimes tend to select
planar symmetric 3D wire frames when a purely equi-
angular solution is not possible. But we also see that
MSDA will make unacceptable errors, even in simple
cases, because it is not constrained to prefer solutions
with planar faces unless the geometry of the line draw-
.ing itself forces planarity.

3 Our Planarity Enforcing MSDA Algorithm

What’s missing in the MSDA principle is a means for
enforcing the planarity of specified faces. There are two

_
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Marill’s Reconstruction

Hinge
Example N

Our Reconstruction

“Pownts | (-0.56 0.24 1.50 1.04) (-0.02 -0.08) (0.30 2.89) (0.86 2.56
Tines [(01)(12)(23) (35)(54) (40)
0123)0453)

_ B [ Ragles (Wean / Range) 2 |
Object 0.00 0.64 -0.12-0.77 -047-1.24 | 1.0t0 2.8 ﬁ“” 0 0.137078 | 0.000000 |
Reomait Eﬂi:‘m 0.00 1.21-1.17-041-1.18 1.26 | 20t03.3 627 o a5 0.000283 o.mml
Moo o | 000 193 109021221240 [ 07038 o 5 [oseom 0.000000 |

Fig. G Example N. The SDA of Marill's unacceptable reconstruction is again significantly lower than that of the peychologically plausible

parts to this problem: (1) finding those faces in the line
drawing that should be planar in the 3D reconstruc-
tion, (2) and enforcing the planarity of these faces dur-
ing, or at least by the end of, the optimization process.

3.1 Finding Planar Faces

The following algorithm for finding the planar faces
is based on a set of psychological assumptions presented
in appendix A. The requirements of items 3, 4, and
5 from appendix A have been composed into the follow-
ing algorithm. (In the following discussion, we define
a face in the line drawing to be a sequence of vertexes.)

First, all simple (nonself-intersecting) closed circuits
containing more than three lines are found. (Triangles
are necessarily planar, so they need not be considered.)

Those circuits that are either: (1) completely empty of
both lines and vertexes (such as the faces of example
B); or (2) both convex (in the line drawing) and free
of internal circuits (such as all the faces of example J)
are considered to be planar faces of the wire frame;
call this initial set ®. A circuit is defined to be an in-
ternal circuit to a convex circuit if: (1) all of its vertexes
lie within the convex circuit; and (2) it terminates in
two nonadjacent vertexes of the convex circuit.
Added to ®, are those circuits, defined by the
following algorithm, that are not subsets of any circuit
in ®,. First, all triples of consecutive lines such that
the first and third lines are paralle] are found (the two
planar faces of example N fall into this category, as do
the “table legs” of example E). Then, if possible, each
triple of lines is extended with additional consecutive
lines such that all even-numbered lines are parallel to
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each other and all odd-numbered lines are paralle] to
each other. An example of a closed circuit found this
way is the side of the staircase facing the viewer in ex-
ample H; the side of the staircase opposite the viewer
is an example of an open circuit found using this same
rule.

Finally, pairs of parallel lines lie on planar faces in
general position, so the four vertexes of the pair of lines
are defined to form a planar face (whether or not the
vertexes are connected by lines in the line drawing).
If the pair of lines are not already a subset of a pre-
viously found planar face, these are added to ®.’

The above procedure is remarkably robust in dealing
with unconstrained line drawings. For example, we have
yet to find a case where this procedure proposes a
psychologically implausible planar face (it even found
faces in our test cases that we had not originally recog-
nized as being planar—such as the back side of the stair-
case in example H). However, it will sometimes miss
finding a concave planar face leaving the 3D model
underconstrained, and this can result in the reconstruc-
tion of a psychologically implausible 3D wire frame.
If we know that the line-drawings to be processed are
restricted to the projections of blocks world objects with
all plansr intersections included in the drawing (i.c.,
no hidden lines removed), then we can be assured that
no faces are missing by (omitting some details here)
first employing the above procedure, next removing all
lines’ edges from the drawing that are assigned to two
faces, and then repeating this whole process on the
reduced line drawing until all the edges have been
assigned to exactly two faces (there are some special-
position configurations in which three or more faces
have a single edge in common that we presently do not
deal with). For this more constrained universe of line-
drawings where we correctly and completely identify
all the planar faces, we have yet to encounter a case
where our algorithm produces a psychologically im-
plausible 3D model.

32 Enforcing Planarity

The second requirement, enforcing planarity, is accom-
plished by adding a term to the objective function that
is zero when all the designated planar faces are actually
planar, and increases in value as the faces deviate from
planarity (call this term DP). The new objective func-
tion, EQ)), is a linear combination of the previously
defined SDA term and the new DP term:®

E(\) = \SDA* + (1 - NDP

Note that minimizing E(\) favors planar faces, but
strict planarity is not necessarily assured. This is not
quite what we would like in the ideal case. Ideally, we
would like to find the orthographic extension of the line
drawing with the lowest SDA that has exactly planar
faces (i.c., for which DP = 0).” To achieve this, we
use a continuation method (Leclerc 1989; Witkin et al
1987), which is a sequence of descent steps applied to
E()), for decreasing values of \. The sequence begins
with the initial condition that Marill suggests (z = 0
for all points) and with some initial Ay < 1. Then, A
is decreased by a given amount and the descent algo-
rithm is applied anew, starting at the solution found for
the previous value of \. This is repeated until A is suf-
ficiently close to zero so that no additional changes oc-
cur with further reductions in A.

Why not simply start with A close to zero in the first
place? The reason is that when X is sufficiently close
to zero, the local minima of E(\) are determined only
by the planarity component. Thus, simply starting with
A close to zero would not allow us to find solutions with
low SDAs (in fact, when A = 0, the original line draw-
ing, which is planar, is a local minimum of E(\)).
Although we cannot affect the shape of E(\) when A
is small, we can choose the starting point for the des-
cent algorithm. Thus, the purpose of the continuation
method is to choose a sequence of starting points that
are first strongly influenced by the SDA term, but which
eventually become dominated by the DP term. The
method is not guaranteed to find a global minimum of
the objective function, but has yielded excellent answers
for all the examples discussed in this paper.

We define the deviation from planarity term, DP,
as the sum of terms DP;, where DP, is zero when face
f; is planar, and increase as the face deviates from
planarity. We have found two useful definitions of the
DP,;. The first is a strong planarity term that will not
allow a face to fold from one planar configuration to
another planar configuration, but applies only to con-
vex faces. To see how a face can fold from one planar
configuration to another one within the context of the
optimization we are performing, consider a line draw-
ing of a square. When all of the z values of the vertexes
are zero, the face is planar. By letting the z values of
the first and third vertexes become arbitrarily large, the
face “folds” into a configuration that, in the limit, is
also planar. In order to detect and avoid this folding
whenever possible, we define DP; to be the following
function (DP1) whenever face f; is convex in the line
drawing (DP1 is based on item 6 in appendix B):

|
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Let »n be the number of sides in the face, and o; be
the angle at the / vertex. Then,

DP1 = [(n-z)f-Z‘,a,Jz
J

A weaker measure of planarity, DP2, applicable to
all faces, is based on the observation that the normals
defined by pairs of consecutive pairs of lines should
lie in the same direction (this is analogous to the no-
tion of torsion for a curve):

)3 [,_ ( (-1 X B) * (4 X Ly ]’
] [ 1 I 17 9 Y|

where J; is the j* line of planar face f; and j — 1 and
J + 1 refer to the previous and next lines in the face,
respectively (i.c., the subscripts are taken modulo the
number of lines in the face).

The combined DP term is the sum of: (1) the sum
of DP1 over all convex faces, and (2) the sum of DP2
over all nonconvex faces divided by the number of
angles in all of the nonconvex faces.

3.3 Results

Figures 2 through 6 illustrate the results of our planarity
enorcing MSDA algorithm, and allows one to compare
them with both Marill’s reconstructions and the original
3D objects that were used to generate the line draw-
ings. The “original 3D objects” presented in our figures
are the psychologically plausible solutions that we ex-
pect the program 10 recover. We started with actual 3D
wire frames, rather than arbitrary line drawings as an
ings will not induce the perception of a 3D configura-
tion in buman subjects.

‘The reconstructions are illustrated both graphically
(as two views in the upper third of each figure) and
in tabular form in the lower third. The first column of
the table lists the z coordinates of each object, the sec-
ond column is the range of lengths of the lines of each
object, the third column is the mean and range of the
angles formed by all line pairs meeting at a common
vertex, the fourth column is the standard deviation of
angles (SDA) of each object, and the fifth column is
the deviation from planarity (DP) of each object. To
simplify the comperison of the results, the recovered
Z coordinates have been normalized so that the first

point always has z = O, and the second coordinate is
always positive (this normalization procedure has no
effect on the objective function).

We also applied our algorithm to examples A
through I from Marill’s paper. Since his algorithm pro-
duced approximately planar-faced solutions by itself in
all cases but example I, it isn't surprising that our
algorithm produced solutions almost identical o his.
The greatest deviation from his result was for example
I, because Marill’s algorithm recovered a significantly
nonplanar face for the leftmost face of the line drawing.

In all of the examples, the Azs we used for Marill's
algorithm (both as a stand-alone algorithm and within
the continuation method) were 0.125, 00625, 003125,
0015, and 0.007. We used a smaller initial Az than Marill
suggests because the larger one often forced the algo-
rithm out of the valley of attraction of the current local
minimum. Decreasing Az by a factor of two generally
allowed the algorithm to run in the fewest number of iter-
ations. Using a smaller final Az allowed the algorithm
%0 produce significantly more accurate solutions. In the
continuation method, A was started at 0.25, and was
decreased by a factor of two a total of ten times.

Exampile J (figure 2) illustrates Marill’s reconstruc-
tion for a line drawing of a rectangular hexagonal prism.
implausible from these two views, but, as we discuss in
the following section, the reconstructed object does not
appear rigid when rotated in real time. It would appear
that at least part of the reason for this result is that the
recovered faces are clearly nonplanar, as shown by the
value of DP in the table. The reconstruction obtained
by using the planarity enforcing MSDA algorithm is
almost identical to the original hexagonal prism.

In example K, we see that the MSDA principle is
ambiguous for simple line drawings. Marill’s recon-
struction takes the line drawing of a planar hexagonal
plate (SDA = 00) and reconstructs a nonplanar object,
also with SDA = (0. By enforcing planarity, however,
our reconstruction is quite close to the original hex-
agonal plate.

In examples L and N, we see further evidence that
the MSDA principle by itself is inadequate for even sim-
ple line drawings. In both examples, Marill’s recon-
struction has a significantly lower SDA than the original
object, and we consider both of these reconstructions
to be psychologically implausible. Our reconstruction
of example L is quite close to the original object,
modulo an additive constant and flip of the z coordinates
of the second object (which is invisible to the objective
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function). Example N is a fairly ambiguous figure, and
our reconstruction favored a “hinge” with all angles
close %0 90 degrees (the original object had a “hinge-
angle” of 45 degrees). Because of the ambiguity of the
figure, there exists a family of reconstructions that we

Example M shows the reconstruction of a figure for
which some of the planar faces are not equiangular.
Again, because some of the faces had more than four
sides, Marill’s algorithm failed % recover a psycho-
logically plausible object. Our reconstruction is reason-
ably good, but it did adjust the right angles in the large
face by as much as 13 degrees in order 0 make the
angles in that face closer to being equal. Nonetheless,
we consider the reconstruction to be psychologically

3.4 Swability and Robustness of the Planarity Enforc-
ing MSDA Algorithm

We have examined the stability and robustness of our
algorithm in two ways. The first was to examine the
behavior of the algorithm applied to differeat projec-
tions of the same 3D objects, but always using the same
initial conditions for the optimization, namely z = 0
for all vertexes. The second was 10 examine the behavior

We ran the planarity enforcing MSDA algorithm on
atleast 32 randomly chosen projections of the 3D objects
used to create the line drawings of examples A through
N.” For virtually every projection of each of these ob-
jects, the algorithm reconstructed the object as well as
it did for the original projection. For example, figure 7
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shown in the lower left-hand corner of each group of four. The original line drawing is annoted by: (1) the projection number; (2) the letter
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The other three line drawings are three views of the reconstruction.
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shows nine projections and the corresponding
recoustructions for the hexagonal prism (Marill’s
algorithm failed for all of these projections). An ex-
ample of a near failure is shown in figure 8, where the
cighth projection of the staircase is almost in special
position, producing the largest error, and using the
greatest number of iterations. In fact, when the rule
adding all pairs of parallel lines as planar faces is
removed, the algorithm leaves the z values virtually un-
changed from their initial values (not illustrated here).
In summary, in approximately SO0 trials, either the
planarity enforcing MSDA algorithm correctly recon-
structed the original object, or it left the line drawing
as an “uninterpreted” flat object.

By comparison, the MSDA algorithm is relatively
unstable, even for the line drawings one might expect it
t0 get right. For example, figure 9 shows nine projec-
tions and the corresponding reconstructions using the
MSDA algorithm, for a cube in which all of the angles
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should be exactly equal. Note that projections 1 and 9
produce psychologically implausible reconstructions.

In a second set of experiments, we used a random-
number generator to provide twenty sets of initial zs
in the range —1 to 1 for examples A through N." With
the exception of example D, which was always correctly
reconstructed, the MSDA algorithm failed to converge
to a psychologically plausible solution in at least four
of the twenty trials on each of the other line drawings,
and produced an average of ten failures per line draw-
ing. In other words, the SDA term by itself has many
local minima that descent algorithms will fall into.

On the other hand, the planarity enforcing MSDA
algorithm succeeded in converging to a psychological-
ly plausible solution in all trials but one (it failed in
one trial of example N, the hinge.)? This extremely
robust performance was somewhat unexpected. We
believed that the initial condition, z = O for all vertexes
was an important component of the continuation
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Fig. & Nine projections of the staircase, and our corresponding reconstructions. Note that the eighth projection is very nearly in special posi-
tion, with many vertexes and lines overlapping in the line drawing. The continuation method had the largest error and used the greatest number

of iterations for this case. When the rule adding all pairs of paraliel lines as planar faces is removed, the continuation method prefers the
original line drawing (all z3 constant) as the intepretation, which is certainly psychologically plausibie.
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Fg. 2 Nine projections of the cube, and the corresponding reconstructions using Marill’s algorithm. Nose that projections 1 and 9 produced

peychologically implausible reconstructions.

method. However, it would appear from the results of
these experiments that the imposition of the planarity
term in the continuation method severely curtails, or
eliminages, psychologically implausible minima. One
might conjecture that, for most line drawings, there is
one® (or perhaps a very few) psychologically plaus-
ible local minima in the SDA when the zs are con-
strained to a planar orthographic extension.

3.5 Reconstruction Time

The specific descent algorithm defined by Marill, and
described here, has the nice property that it’s easy to
describe and easy to implement, no matter what the
objective function may be; however, it is typically quite
inefficient. One of the better descent algorithms is the
conjugate gradient algorithm. To estimate achievable

run times, we implemented the conjugate gradient algo-
rithm described in Numerical Recipes (Press et al.
1986). The algorithm requires an objective function (in
this case, E(\)) and the gradient of the objective func-
tion (in this case, a function that returns a vector whose
i element is the partial derivative of EQ\) with respect
to z). Analytically deriving the gradient of E()) is
rather painful, so instead we used a simple numerical
approximation; this involves evaluating the objective
function for each vertex, which is expensive. A more
efficient implementation that only recomputes those
components of the objective function that change when
a given vertex changes could reduce the following run
times by a factor of four or better.

Table 1 gives the number of iterations/run time (in
seconds) for three example line drawings. These ex-
periments were run on a Symbolics 3645, so we would
expect about a factor of ten improvement if algorithms
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were implemented in C on a modern workstation such
as a2 SUN SPARC-2 (according to some simple bench-
marks that we ran). The last column gives the expected
run time for an optimized conjugate gradient algorithm
running on a SPARC-2.

Table 1. Number of iteratinns/run time for three examples.

Example Symbolics Symbolics SPARC-2
Cube 187/199 15/15 15/0.375
Tetrahedron 469 14/16 140.4

Hexagon prism 406/1306 33/186 33/4.65

Note that the conjugate gradient algorithm improves
the run-time considerably for all but the simple
tetrahedron line drawing. On a SPARC-2, the run times
are such that the time required to reconstruct a line
drawing is small relative to the time it would take to
manually enter the drawing. That is, the run times are
well within “interactive time.”

3.6 A Reduced Search Space Technique for Obtaining
Exact Planar MSDA Reconstructions

In the planarity enforcing MSDA algorithm described
in section 3.2, planarity is not strictly enforced, but
rather, nonplanarity is penalized during the optimiza-
tion process. This approach almost always produces
faces that are very nearly planar at the end of the op-
timization process. There is a very efficient way to
strictly enforce planarity during the MSDA optimiza-
tion for line drawings of strictly planar-faced wire
frames, described below. The problem with this ap-
proach is that if the line drawing does not actually cor-
respond to a planar-faced wire frame, or if the line
drawing is not accurate, the resulting reconstruction will
typically be psychologically unacceptable—we lose the
graceful degradation provided by the planarity enforc-
ing MSDA.

The following method for strictly enforcing planarity
is based on the observation that there are far fewer
degrees of freedom in a planar-faced object than there
are vertexes (to reemphasize, this method is only ap-
plicable to line drawings of strictly planar-faced wire
frames). One way of expressing this observation is in
terms of a subset of vertexes, that we call the free
vertexes, whose  values uniquely determine the z values
of all of the other dependent vertexes by virtue of the

planarity of certain faces. For instance, given the planar
faces of the hexagonal prism of figure 2, specifying the
depth of the four vertexes 0, 1, 2, and 6 uniquely deter-
mines the depth of the other vertexes: the depth of
vertexes 3, 4, and § are determined by constraining
them to lie on the same planar face as vertexes 0, 1,
and 2; similarly, vertex 1l is determined by vertexes
0, S, and 6; vertex 10 by vertexes 4, 5, and 11; and
vertexes 7, 8, and 9 by vertexes 6, 10, and 11.%

Having determined the free vertexes, one can then
apply the MSDA principle to the reduced search space.
For the case of the simple descent algorithm, the only
change to the algorithm is that only the free vertexes
are directly modified during the optimization, and that
the depth of all of the dependent vertexes are recom-
puted whenever a free vertex is modified. Applying this
method of free vertexes to the hexagonal prism reduces
the number of iterations from 406 to 39, and the run
time from 1306 seconds to 47 (the run time is reduced
by a greater proportion than the number of iterations
because the DP term has effectively been removed from
the objective function).

Thus, the advantage of using the method of free
vertexes is that it reduces the search space and run times
considerably—oftentimes an order of magnitude or
more. The disadvantage of using this approach is that,
unlike the planarity enforcing MSDA algorithm, it re-
quires a virtually perfect line drawing of a planar-faced
object to ensure that the resulting reconstruction is
planar. For example, adjusting the (x, y) coordinates
of even one vertex by a small amount in a line drawing
such as the cube (example A), can cause the 3D wire
frame to be highly nonplanar for some choices of z
coordinates of the free vertexes. Consequently, the
method of free vertexes can produce reconstructions
that are not psychologically plausible. Nonetheless,
there are certain situations in which this approach can
be effective, both for special kinds of line drawings,
and for line drawings that are first processed to make
them precise projections of the intended 3D object.

4 Implications for Human Vision

Line drawings provide an effective means of commun-
ication about the geometry of 3D objects. It is a matter
of some debate as to whether the interpretation of line
drawings is a learned skill, or whether line drawings
are isomorphic to some intermediate construction of
the human visual system (HVS) in its normal processing
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of imagery, but in cither case an understanding of how
bumans interpret line drawings is extremely important
in enabling man-machine communication with respect
0 images, diagrams, and spatial constructs. In this sec-
tion we address two related questions arising out of the
investigation described in earlier sections: (a) under
what conditions is a line drawing actually given some
intended 3D interpretation, and (b) under what condi-
tions does a moving rigid (wire frame) object actually

Some, but not all, line drawings are perceived by
human subjects as being three dimensional. What at-
tributes of the drawing promote such an interpretation,
and what are the constraints on the nature of the
resulting 3D construction? Partially because human in-
trospection is involved, this is a very difficult question
to answer. For example, if the drawing is recognized
as a known or previously encountered 3D object, it
might be visualized this way even though it violates con-
ditions necessary for an unfamiliar object to be perc-
cived as being three dimensional. Gestalt psychologists
have suggested that if the drawing offers a simpler con-
struct when seen as three dimensional than when seen
as being flat, it will be perceived as being three dimen-
sional; however, an effective computational procedure
to evaluate “simpler”” has yet to be provided (and there
is also the problem of producing the corresponding 3D
variance is an example of a simplicity principle, but
we have not yet been able to define a formal complex-
ity metric, as was done, for example, in the work of
Leclerc (1989).

It appears to be much more productive to show a
human subject a candidate 3D reconstruction and ask
if it corresponds to some given line drawing than it is
to tabulate introspective judgments about whether ob-
jects appear to be 2D or 3D. The former approach, in
fact, is how Marill presents his results to the reader.
Obviously, he can not show an actual 3D reconstruc-
tion, but only a projection. If he showed the recon-
structed object projected without some spatial reloca-
tion, then all we have is the original line drawing back
again—and no determination can be made; Marill
shows two projections of his reconstructed objects,
rotated by a few degrees, for evaluation by the reader.
Now we know that every orthographic extension is a
geometrically feasible reconstruction, so on what basis
does the human judge acceptability (i.e., what we have
called a psychologically plausible reconstruction). It
is easy to hypothesize a whole list of conditions that

should be met—mostly different instantiations of the
idea that regularities (such as parallel lines or equal
angles and lengths) observed in the line drawing are
not accidental, and should be preserved in the recon-
structed object; orthographic projective invariants, such
as parallelism, should then also be preserved in the
reprojections of the spatially relocated object. One
could write computational procedures o search for such
invariants, but this approach seems incompatible with
the universality of the human evaluation process (e.g.,
none of the invariants we happened to think of may be
present in the instances we are considering). A more
powerful idea is to require that the computational pro-
cedure that produced the original reconstruction give
the same result when applied to any of its general posi-
tion reprojections—that is, a consistency criterion. This
is exactly the condition that obtains when we observe
a moving or rotating object to be rigid; when we see
a (continuous) sequence of projections that we perceive
as being isomorphic to the same geometric reconstruc-
tion, we perceive the object as being rigid.”
Applying the above ideas to an evaluation of the
MSDA algorithm, we find two serious deficiencies in

First View Marill’s Reconstruction

Second View Marill's Reconstruction

Fig. 10. Tllustration of the failure of Marill’s aigorithm to recover
geometrically similar 3D models from two different projections of
the same 3D project. The top row shows the input line drawing of
the 3D object as seen from one viewpoint (similar to example G),
and two views of Marill’s reconstructed object. The bottom row shows
the input line drawing of the same 3D object as seen from a dif-
ferent viewpoint, and two views of Marill’s reconstructed object. The
two reconstructed objects not only appear different, but are in fact
significantly different geometrically, as we verified by examining their
internal representation. In contrast, applying our algorithm to both
of these input line drawings, as well as ten other randomly chosen
views produced reconstructions with an angular error of less than
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Fig. 11. The illusion of nonrigidity for a rotting wire frame with nonplanar faces. The wire frame, Marill's reconstruction of example J, is
rotated about a vertical axis in the center of the object. The rotation angle is written in the lower left-hand corner of each box.

the algorithm. First, when presented with two dif-
ferent orthographic projections of an object, the MSDA
algorithm sometimes fails to recover 3D wire frames
that are even remotely similar to each other (see figure
10). Second, when we use the computer to create a
rotating display of some of the reconstructions obtained
with the use of the MSDA algorithm, we see what ap-
pears to be the movement of a nonrigid object (see
Figure 11).

The latter observation led to a number of casual ex-
periments to determine the factors affecting the percep-
tion of nonrigidity in displays of rotating 3D wire
frames. We found that wire frames with pronounced
nonplanar faces (where one would have expected a
planar face from the line drawing) appear to be
nonrigid. Marill’s solution for example I (asymmetric
solid) does appear rigid under rotation, even though
the faces are slightly warped. However, his solution is
very nearly planar; if we force a bit more distortion
into the solution, the object then appears to deform
under rotation. Thus, it would appear that strict (or at
least near) planarity for the appropriate faces is a
necessary condition for the perception of rigidity.

However, planarity by itself was not sufficient to
create a perception of rigidity. For example, if one
chooses random values for the free vertexes of a cer-
tain line drawing (see section 3.6), one produces an ob-
ject whose faces are strictly planar. However, unless
the resulting figure is also a local minimum of the SDA,
the resulting 3D wire frame does not appear rigid when

rotated. Similarly, the wire frames of some line draw-
ings with all of the z coordinates set to zero appeared
nonrigid when rotated (e.g., example A). Furthermore,
all of the hundreds of solutions produced by the planar-
ity enforcing MSDA algorithm that we looked at ap-
peared rigid under rotation. Thus, we tentatively con-
clude that a wire frame must not only be planar to be
perceived as rigid, but must satisfy additional con-
straints, such as being a local minimum of the SDA.

S Future Work

There are a number of directions that we have begun
to explore or that we plan on exploring in the near
future.

The first of these, for which we have some prelim-
inary results, is a redefinition of the objective function
in which the angles are partitioned into groups thai
should be equiangular in 3D. This becomes necessary
either when there are angles in the line drawing that
are not a part of any planar face or when the angles
in a planar face are not all equal in 3D (in either of
these cases, the symmetric preference theorem of ap-
pendix D does not hold). An example of the first case
is the hinge (figure 6), in which angles (1 0 4) and
(2 3 5) are not a part of any planar face. An example
of the second case is the truncated box (figure 5), in
which angles (1 2 3) and (2 3 4) should be equal to
each other but not equal to the other angles in planar
face (0 1 2 3 4), and similarly for face (5 6 7 8 9).
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Fg. 12. An illustration of the need to group angles together than should be equiangular, rather than applying the planarity enforcing MSDA
principle o all angles. () The reconstruction using an appropriate equiangular grouping. (b) The recunstruction using the plansrity eaforcing

MSDA principle applied to all angles.

By changing the definition of the SDA term to be the
sum of the standard deviation of the angles in each
equisngular group (weighted by the number of angles
in that group), we have improved the reconstruction of
these two objects considerably. Defining a simple, yet
robust, set of rules that can automatically determine
the equiangular groups for a line drawing, as we did
for the planar faces of the line drawings in this paper,
is still an open question. A simple rule is to group
together all angles that are a part of a convex face. This
is illustrated in figure 12. The reconstruction is accurate
to 3 degrees, whereas using the SDA over all angles
gives a relatively poor reconstruction.

A second direction that we plan on exploring is to
implement a preprocessing step that would take a rough
sketch and enforce various constraints in 2D, such as
(1) parallelism between designated pairs of lines, or be-
tween designated lines and axes; (2) equality in length
between designated lines, or between lines and fixed
lengths; and so forth. The paradigm would be similar
to the one for the interpretation of the line drawing,
namely some set of rules would be used to determine
which lines should be parallel or of equal length (with
outside intervention always possible), and an optimiza-
tion step would then enforce the constraints while mov-
ing as little as possible from the original line drawing.
The ideal is to be able to do as much of this as pos-
sible without intervention for an interactive user.

A third direction is to explore the relationship be-
tween what we have done and previous work in under-
standing the 3D shape of curves, such as (Barrow &
Tenenbaum 1981; Stevens 1981; Witkin 1981; Barnard

& Pentland 1983; Malik & Maydan 1989; Pentland &
Kuo 1990).

An intriguing relationship between Barrow and
Tenenbaum’s work on single curves and our work on
planar faces is as follows. They defined the problem
of interpreting curves in a manner similar to the way
that we and Marill did: by defining an objective func-
tion over the z coordinates of the object and minimiz-
ing that objective function using a descent algorithm.
Their objective function was the integral of the change
in curvature squared plus the torsion squared. Thus,
an ideal curve for their objective function is a planar
circle, since both terms in the integral are then zero
everywhere (when the end-points are removed from the
integral, the arc of a planar circle is also an ideal curve
for their objective function). Analogously, one of the
ideal curves for our definition is a regular planar
polygon (or an arc of a regular planar polygon), since
then both the SDA and DP are zero. Thus, the similar-
ities are that the SDA plays a role similar to the integral
of squared change in curvature, and the DP plays a roie
similar to the integral of squared torsion. Some of the
differences are that both the SDA and DP1 terms are
global measures of symmetry and planarity, while the
curvilinear measures are integrals of local measures.
A second difference is that the SDA is also zero for
some nonregular and even nonconvex polygons.

Pentland and Kuo (199) applied Barrow and Tenen-
baum’s idea to distinctly nonplanar curves and surfaces
by leaving out the torsion component. It is somewhat
surprising that this worked since both Barrow and
Tenenbaum’s and our own experience indicate that
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planarity is a key ingredient in making the optimiza-
tion approach work. We will explore this question in
the near future.

Finally, we would like to find some computational-
ly effective procedure for using the rigidity under rota-
tion criterion in the 3D recovery process, rather than
as a final check on proposed solutions.

6 Discussion

Traditional blocks-world problems are mathematical in
nature, they deal with issues of existence and consis-
tency based strictly on geometric considerations; they
make no reference to what people actually see. The
problem defined by Marill is psychological; since every
line drawing has an infinite number of mathematically
valid orthographic extensions and no invalid ones, on
what basis does the HVS select a particular extension
as being psychologically acceptable? Marill proposed
an intriguingly simple criterion for duplicating human
preference, but we have shown that, while it often pro-
duces an acceptable answer, it is unreliable even in very
simple situations.

Marill’s work has similarities to the Huffman-
Clowes-Waltz approach that focused on how polyhedral
vertexes can appear in a line drawing and, hence, the
constraints such vertexes impose on the implied 3D
model; Marill considers only the constraints implied
by line intersections at specified vertexes in the line
drawing. Mackworth, Kanade, and Sugihara found it
necessary to introduce constraints based on the explicit
assignment of vertexes to planar faces. We show here
the need for introducing a similar explicit requirement
for planarity (actually, in the context of optimizing an
objective function, our constraint is soft in that it can
be violated). However, in our case, the requirement for
planarity is justified on psychological grounds rather
than as a means for achieving a geometrically more
competent algorithm.

The preference of the HVS to interpret a line draw-
ing as the most symmetric polyhedral (planar-faced)
object consistent with the drawing is well established
in the psychological literature. Marill appeared to have
discovered a simple computational procedure for find-
ing such solutions for any given line drawing, but on
closer examination, it became apparent that his MSDA
princigle does not enforce (or even prefer) planar solu-
tions. ' Because of this deficiency, MSDA is unreliable
even in very simple situations. We were able to prove

(appendix D) that if a planarity preference is explicitly
added to the MSDA objective function, then indeed,
the nonobvious preference for symmetric solutions is
also present. However, we are now forced to address
the problem of how to provide the auxiliary informa-
tion necessary to partition the drawing into the coherent
components corresponding to the 3D planar faces. It
appears that the HVS selects some subset of the con-
tours in the line drawing as corresponding to the planar
faces in the 3D model, and if we do not supply this
information to a recovery algorithm (either explicitly
or by providing a set of conditions implying the same
information), we will fail to recover psychologically ac-
ceptable models.

Most of the work in the blocks-world tradition
employed perfect labeled line drawings with the assign-
ment of vertexes to faces given as part of the input
specifications. If we follow the same approach (al-
though we are not concerned with having perfect line
drawings since our recovery method employs optimiza-
tion, which can tolerate deviations from any of the con-
straints embodied in the objective function), then-we
at least have provided a tool for simplifying man-
machine communication using the language of line
drawings. However, there is obvious theoretical value
in understanding the criterion for human selection of
the circuits in the line drawing that correspond to planar
faces in the 3D model.” In part, this importance is
related to the issue of how the HVS recovers the shape
of a moving object. Even though there are a few well-
known exceptions, it is widely believed that the HVS
will assume an object to be rigid and correctly recover
its shape if this is indeed the case.”® However, the rigid
wire frames with nonplanar faces provide a whole class
of counter-examples to this belief—they appear to be
nonrigid when observed in motion (even at very low
speeds where maintaining correspondence of vertexes
from one projection to the next is no problem). The
nonrigidity appears to result from the HVS making in-
correct decisions about how the drawing can be parti-
tioned into planar faces (see appendix E).

7 Summary

Marill’s recently published paper claimed that the
simple procedure he described could duplicate human
judgment in recovering the 3D wire frame geometry
of objects depicted in line drawings. He provided some
impressive examples, but no theoretical justification to
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back his claims. In this article, we critically examined
the merits of Marill's algorithm, provided at least a par-
tial explanation for its competence, identified weak-
neases, showed how it could be improved, and discussed
the implications of this work for clarifying some im-
portant problems in human perception.

In particular, we provided a number of theorems that
show that minimizing the standard deviation of angles
is (potentially) a simple and effective method for selec-
ting symmetric solutions when the constraining line
drawing (which is the projection of a wire frame that
may be incomplete) permits such interpretation. On the
other hand, we showed that Marill’s algorithm could
fail in simple cases, that he employed an optimization
procedure that was often too weak to find the correct
answer even when it was within the competence of the
objective function, and that the algorithm would often
produce wire frames with nonplanar faces (something
no human would intuitively accept in perceiving a
straight-line drawing as a 3D configuration).

We argued that an important condition in testing or
evaluating the psychological plausibility of a reconstruc-
tion is that its reprojections (after spatial relocation)
result in the same object being produced by the recovery
algorithm. For the human visual system, this is equiv-
alent to the condition that the recovered object appear
rigid when observed during movement or rotation. The
perception of rigidity for wire frames appears to be
highly correlated with the presence or absence of
strongly nonplanar faces. By modifying Marill’s ob-
jective function to explicitly favor planar-faced solu-
tions, and by using a more competent optimization
technique, we were able to demonstrate significantly
improved performance in all of the examples Marill
provided as well as those additional ones we constructed
ourselves. The robustness of our algorithm was demon-
strated by obtaining consistent psychologically plaus-
ible reconstructions in hundreds of experiments involv-
ing variations in viewpoint and initial conditions for
the approximately 20 objects in our database.
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Notes

1.

10.

11.

12.

13.

Gradient space, originally conceived of by James Clerk Max-
well in 1864 (soc (Whitely 1986)) and rediscovered by D.A. Huff-
man, provides only necessary conditions for planar realizabil-
ity of general polyhedral objects with hidden lines removed, and
thus consistent edge labeling is possible for impossible blocks
world and Origami objects. Further, the labeling/recovery
algorithms were not always competent © find an existing solution.

. There were some other problems of lesser significance for our

purposes. For example, the algebraic formulation was sensitive
to computation round-off errors, and digitization errors in spec-
ifying the line drawing; a realizable object could be rejected
because of such minor numeric inaccuracies. Sugihara dealt with
this problem by adding an optimization step to his algorithm,
which could find a feasible reconstruction if the input drawing
was an almost correct specification.

. Marill, on the other hand, calls the set of all possibie zs the ortho-

. For simplicity, the vertexes are represeated by only two digits

of precision in the table. However, we used the full 32-bit preci-
sion of the projection in the internal representation used by the
algorithms.

. We note that while there generally can be many different ways

of covering a line drawing, those of blocks-world objects with
hidden lines removed will be covered uniquely if we demand
that the interior of the 2D circuits be free of any lines. We aiso
note that it is not always possible to cover a line drawing with
simple closed circuits corresponding 10 the specified planar faces
of a given orthographic extension (see exampie N). It may also
be the case that a given covering has no nontrivial orthographic
extension with planar faces as specified, as in example O.

. One face, in example H, is an exception to this statement.

However, there are enough other geometric constraints in this
particular case to eaforce planarity.

. Because this rule typically produces many additional planar faces,

it was not used in figures 2 through 6. For these line drawings,
planar faces. However, the rule was used in the stability and
robustness experiments of section 3.4.

. The SDA term is first squared to make it commensurate with

the DP term. Note that squaring the SDA term has no effect on
the minimization when A = 1 (i.e., the simple MSDA algorithm),
because the SDA term is positive, and squaring is a monotonic
function of the positive reals.

. This assumes the line drawing is perfect. We later discuss how

such perfect drawings can be obtained in an imeractive
environment.

Since we had only the original line drawing for each of Marill’s
examples, “ve used the reconstruction from each line drawing
as the 3D object for the random projections.

The line lengths for these drawings were approximately in the
range of 2 to 5.

For all line drawings except the truncated box and the hinge, the
largest absolute difference in angles between any trial and the
reconstruction with z = 0 was less than one degree. For the trun-
cated box, the largest error was less than fifteen degrees. For
the hinge, one of the trials caused the hinge to “fold™ with arc-
pairs (1 0 4)and (2 3 5) going to zero degrees. Otherwise, the
largest error was less than seven degrees.

Modulo a change in sign in the z coordinates.
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14. The set of free vertexes is by no means unique. For example,
sy three vertexes from oae hexagon pius any verex from the
other hexagon will do for this line drawing. We have a simple
algorithm for finding a set of free vertemes, but have not yet proven
that it is correct, 30 we do mot present it here.

15. The successive reconstructions are not independest; 1o the ex-
tent that they allow a raage of interprotations, the parameters
selected for one interpremation will influence the parameter selec-

16. Some differences are that Barrow and Tepenbaum considered
arbitrary, but known perspective transforms in their paper, while
Marill used ouly orthographic projections. In either case, the
set of stase varisbles is equivalent. In addition, Barrow and Tenen-
baum did not consider the use of a continuation method.

17. Marill, of course, only returns the wire frame. But in the case
of a blocks-world object, competent algorithms exist for finding
all the valid completions of the wire frame as a solid polyhedral
object (Strat 1984, Markowsky and Wesley 1981).

18. As noted in section 3.1 and appendix A, we have made some
initia] progress toward the solution of this problem and have
developed an algorithmic procedure that can successfully han-
dle all of the examples discussed in this paper, but we recognize
that this is still far short of a complete solution.

19. For example, by using Ullman's result that three distinct or-
thographic projections of four noncoplanar points in a rigid con-
figuration are sufficient to uniquely determine the structure and
motion up to a reflection about the image plane.
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Appendix A. Psychological Assumptions

The following are some of the basic assumptions that

we believe are typically made by people in the recon-

structions of wire frames from line drawings, and some
constraints relevant to partitioning a line drawing into
planar face. They are known to have rare exceptions.

1. Three dimensional wire frames, deriveu from line
drawings, have implied planar faces inside subsets
of their closed circuits; they can also have struts,
such as legs or bracing wires, in or on a planar face.
(Strongly nonplanar faces produce psychologically
implausible solutions.)

2. Symmetric reconstructions are preferred over non-
symmetric ones.

3. Parallel lines in a line drawing are parallel in space.
Lines connecting vertexes falling on two parallel
lines are in a common plane with the two parallel
lines.

4. Many-sided convex closed contours without inter-
nal circuits (in a 2D line drawing) are likely to cor-
resporid o the contours of planar faces in the cor-
responding 3D orthographic extension (see B4). An
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insernal circuit o a convex polygon is defined to be

a circuit for which all the vertexes are internal to

the polygon, and for which the ends of the circuit

lic on nonadjacent vertexes of the polygon.

S. A closed simple contour in a line drawing, without
internal lines, corresponds to a planar face in the
corresponding 3D reconstruction.

An algorithmic procedure for identifying 3D planar
faces in the corresponding 2D line drawing of a wire
frame has been constructed by composing the require-
ments of items 3, 4, and S into a single algorithm, as
defined in section 3. That procedure is sufficient to deal
with all of the examples we discuss here, but is not
general enough to handle other cases we can think of.

Appeadix B. Projective Invariants

for planar geometric structures.

1. The sum of the interior angles (measured between
0 and 360 degrees) of a closed planar contour with
n sides equals (n — 2) 180 degrees. Thus, since a
polygon of n sides projects to a polygon of n sides
under both orthographic and central projection, the
mean value of the interior angles of a given closed
planar contour [(» — 2)180/n] is invariant under both
orthographic and central projection.

We note that Marill measures angles only in the in-
terval between 0 and 180 degrees. To the extent that
we are primarily concerned with equiangular closed
contours in the application of the above theorem in ex-
plaining and using his results, this discrepancy is ir-
relevant since all the interior angles of such contours
are less than 180 degrees.

2. Consider an angle (two line segments sharing a com-
mon endpoint) in 3D space and its orthographic pro-
jection. We will call the plane containing the angle
the source plane, and the plane containing its pro-
jection the projection plane. If the angle is translated
in the source plane, its projection is also translated,
but does not change in magnitude from its original
projected value. Now consider a set of n angles ly-
ing on a common source plane, such that the sum
of these angles is 360 degrees. If it is also the case
that the angles can be translated so that when all
their vertexes coincide, they exactly span an angle
of 360 degrees, then the mean value of the set of
angles (360/n) is unaltered under orthographic pro-
jections. We will call such a collection of angles a
“complete-star.” (Example C, for instance, contains

a complete-star consisting of the eight 45-degree
angles formed at the corner vertexes by the diagonals
with the sides of the square. Example G contains
this same configuration in its central plane.) We note
that if an essentially infinite number of copies of an
angle of d degrees (where 360/d = & and £ is an
integer) is uniformly distributed in orientation over
a plane, then the mean value of the angles under any
orthographic projection of the plane is the constant
value d.

3. We note that if the angle between two line segments
is less than 180 degrees, the angle can be closed to
form a triangle, and since triangles are preserved
under both orthographic and central projection, an
angle of less than 180 degrees will never transform
under such projections into one of more than 180
degrees. We will call a closed planar contour con-
vex if the region it bounds is convex. Since a con-
vex contour has all internal angles of less than 180
degrees, a convex planar contour remains convex

4. We note that the orthographic projection of an ar-
bitrary nonplanar polygonal space curve, with four
or more sides, has a probability of projecting to
cither a nonsimple or concave curve with a prob-
ability (P) that increases with the number of sides:

P>1-05"3

This expression is based on the following model: Con-
sider a process that generates a chain of 3D random
vectors by generating three random numbers for each
vector (in spherical coordinates, an angle uniformly
distributed between 0 and 360 degrees, a second angle
between 0 and 180 degrees, and a length uniformly
distributed between 0 and some fixed integer L). As
each vector is generated we extend the projection of
the developing space curve on the X-Y image plane. The
process stops after some fixed number of steps, which
is determined by choosing a random number in some
given range; the curve is now closed by connecting the
starting point, which could be the origin of the X-Y
plane, to the last point generated and this determines
whether the inside is to the left or right as we follow
the chain of edges of the projected polygon. We note
that the only relevant factor in whether the projected
closed contour is convex or concave is the cylindrical
angle giving the rotation of each of the random vec-
tors relative to the X axis in the image plane. For more
than three sides, there is a 50% probability at each
vertex that the inside angle is greater than 180 degrees,

forn =2 4

l
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which thus produces a concave polygon (the last clos-

ing side can be ignored since it does not have the same

statistics as the other edges in our random model.)

Other probabilistic models would give nonidentical, but

similar results. The > condition is based on additional

considerations, such as the projected curve intersec-
ting itself even though the input specification does not
record a vertex at the cross-point.

5. Closed four-sided polygonal space curves with
90-degree angles at each vertex are planar contours.
To prove this assertion, let the sequence of vertexes
be labeled a, b, ¢, and d. Let the plane containing
lines Ly, and L, (and thus vertexes a, b, and c) be
called P,. Since all angles are 90 degrees, Ly must
lie in a plane (P,) normal to L, at c. Similarly, L,
must lie in a plane (P3) normal to L, at a. Vertex
d must then lie on the line (L, of intersection of P,
and P,, which is normal to P,. We know one solu-
tion is to locate d at the point of intersection (d°)
of L; and P, (where a, b, c, and d° form a rec-
tangle). This is the planar solution and we wish to
show that no other solution is possible. We note that
a second constraint on the location of d is that it must
lie on a sphere with diameter ac (i.e., all right
angles, with legs passing through points ¢ and c,
must be inscribed angles of circles through a and
c with diameter ac). We know d" lies on the sphere
and P, is a bisecting plane of the sphere. Thus L,

* is tangent to the sphere at 4" and d° is the only
possible solution.

6. A Global Planarity Test for a Space Curve. A
planar polygonal curve has a sum of internal angles
equal to (n — 2)180 degrees. Thus, if the curve is
triangulated using only the existing vertexes along
the curve, the sum of the angles of the triangles is
also (n ~ 2)180.

Case 1: Consider a space curve § that projects to

a convex planar curve. If the space curve is itself planar,

the sum of its angles (measured between 0 and 180

degrees) is (n — 2)180. Assume S is nonplanar, that

is, there is a “fold” along one or more edges of some
triangulation of its planar projection. Consider the
vertex V at the intersection of one such fold (with
respect to the implied triangulation 7) and S. The plane
through the two edges of S meeting at ¥, and the faces
of the triangles of T that have edges intersecting at V,
form a polyhedral angle. It is known that any face angle
of a polyhedral angle is less than the sum of the other
face angles. Therefore, the sum of the angles of the
space curve is equal (at vertexes with no folding) or
less (at vertexes with folding) than the sum of the angles

of the triangles in T (i.c., less than (n — 2)180).

Case 2: If the projection of the space curve S is con-
cave, and we measure angles between 0 and 360
degrees, the sum of the internal contour angles in the
planar projection will equal (# — 2)180 as in Case 1.
However, while the space angles with projections of
less than 180 degrees will decrease at folds, the internal
angles greater than 180 degrees will increase (i.c., at
vertexes where there are folds, the polybedral angle in
the argument givea in Case 1 is now formed for the
external angle of S at V). Thus, since some angles will
increase and others decrease, we cannot be sure that
the curve is planar even if the sum of its internal angles
equals (& — 2)180. However, we do have a sufficient
condition for nonplanarity. That is, the curve is known
to be nonplanar if the sum of its internal angles, meas-
ured between 0 and 360 degrees, is not equal to (n —
2)180 degrees.

Appendix C. A Partition Theorem
The variance of a set of S of n objects {a;} is defined

as
V=i2”:(a;-M)’= [2%'2] - M
where
-13.

Let us now partition the {q;} into k subsets, such
that the subset S; has n; elements and mean M; where:

1
M=—2¢
n 8
Let ¥, be the variance of S; about M; and let A; =
M - M).
Theorem:
1 &
V=c2inlv + 4
n J=1
Proof: The expression for V can be rewritten as
v=1 [Z[a, - (M; + &)P +Z[a,' - (My + 4y
nts $;
+o D [a — (M + Ak)lz]
S,
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If we let:
V= 2 le - (4 + &)F
y

Then we have:
LaTssapsa-203"
N L] ]
~ 20, 3, % + 2M; 4,
n
Given that Z(ay/n) = M;, we note that the 4th and 6th

terms cancel and the 2nd and Sth terms combine:
.’l'- [Zi—u}] +A}=V,+Alz
»

]
And
Vi = mlv; + 47}
QED
Appendix D. Symmetric Preference Theorem
Recall that

1. In appeadix B we showed that the average angle of
all planar orthographic extensions of a given sim-
ple closed 2D contour are the same, and that the
average angle of all planar orthographic extensions
of a complete-star are also the same;

2. in appendix C we proved a theorem that allows us
0 compute the SDA of a set of simple closed planar
contours (and/or complete-stars) as the sum of two
components. The first component is the variance of
the angles in a contour or star about the mean angle
of that contour or star, summed over all contours
and stars. The second component is a weighted sum
of the squared differences between the mean angle
of each contour and star, and the average of all the
angles under consideration.

By (1), the second component of the variance is con-
stant over all planar orthographic extensions because (a)
the mean of each contour and star is constant over all
such extensions, and (b) the mean of all angles can be
computed as the weighted sum of the mean of each con-
tour and star.

Consequently, if we restrict our attention to the
planar orthographic extensions of a line drawing, then
by (2) above, only the first component of the variance
will change over the extensions. Since the first com-

ponent is zero for an extension comprising only equi-

angular planar contours and stars (such as the solutions
for examples A, B, C, G, J, K, and L), and since it
is positive otherwise, then such symmetric solutions
correspond to the global minimum of the SDA over all

Appendix E. Factors Affecting the Perception of
Nonrigidity

If we rotate a randomly derived orthographic extension
of almost any of the line drawings used as examples
in this article, the object appears noarigid to most
observers (even though, of course, the wire frame is
actually a rigid objéct). While there are many possible
explanations for this phenomenon, our conjecture is that
it is primarily due to special position projections of the
wire frame (that occur at one or more poses in its rota-
tion) that lead the HVS w0 incorrectly assume that some
projective invariant (such as paraliel lines, see figure
11) is being observed. This, in turn, causes incorrect
expectanomabwtﬂlepmenceandlounonofphm

%mﬁm&llyloobdusomeotherpmsiblecmu
tive factors, but did not observe consistent nonrigidity
phenomena. For example, we looked at objects, such
as example N that produce compelling 3D interpreta-
tions with Necker reversals, but for which the drawing
is incomplete—it does not show all the edges that should
be visible, for example, where planar faces intersect.
There was the possibility that these missing edges in
the 3D model (and thus missing lines in the drawing)
could cause the appearance of a nonplanar-faced ob-
ject to be observed. But the hinge, and the few other
objects we looked at in this category, appeared rigid.

We also looked at nonplanar orthographic extensions
of drawings that generally appeared flat, including
blocks-world type drawings that do not have correspon-
ding polyhedral realizations (such as example O). The
results here were ambiguous. The rotating objects
generally produced illusions of nonrigidity, but since
these objects did not always appear 3D, the illusions
were generally very weak.

Some other causal experiments include cases where
all the lines connecting the vertexes of the wire frames
are deleted; we observed that some of the wire frames
that originally appeared nonrigid now appeared to be
rigid under rotation. And, as a general observation, we
have not encountered any examples in which the wire
frame of a (nondegenerate) blocks-world object appears
nonrigid when in motion.
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Abstract

This paper summarizes the underlying ideas and algo-
rithmic details of a computer program that performs at
a human level of competence for a significant subset of
the curve partitioning task. It extends and “rounds out”
the technique and philosophical approach originally pre-
sented in a 1986 paper by Fischler and Bolles. In par-
ticular, it provides a unified strategy for seiecting and
dealing with interactions between salient points, even
when these points are salient at “different scales of res-
olution.” Experimental results are described involving
on the order of 1000 real and synthetically generated
images.

Index Terms: computer vision, salient points, critical
points, curve partitioning, curve segmentation, curve de-
scription

1. Introduction

A critical problem in machine vision is how to break up
(partition) the perceived world into coherent or meaning-
ful parts prior to knowing the identity of these parts. Al-
most all current machine vision paradigms require some
form of partitioning as an early simplification step to
avoid having to resolve a combinatorially large number
of alternatives in the subsequent analysis process. Given
this critical role for partitioning as a functional require-
ment of a complete vision system, it is a major challenge
to find some significant subset of the partitioning prob-
lem for which an algorithmic procedure can duplicate
normal human performance. This paper (a compressed
version of a much longer document which will appear
in IEEE PAMI later this year) summarizes the under-
lying ideas and algorithmic details of a computer pro-
gram which performs at a human level of competence
for a significant subset of the curve partitioning task. It
extends and “rounds out” the technique and philosophi-
cal approach originally presented in a 1986 PAMI paper
by Fischler and Bolles [Fischler86]). For example, it pro-
vides a unified strategy for resolving conflicts in selecting

*This work was performed under contracts supported by the
Defense Advanced Research Projects Agency.

among neighboring potential partition points that may
be salient at different “scales of resolution.”

While our focus in this paper is on curve pattitioning
in a generalized setting (the curves in our experiments
are mostly without semantic meaning), and where the
criterion for success is duplicating normal human perfor-
mance, finding salient points on image curves (potential
partition points) plays a critical role in both two and
three dimensionai object recognition, in curve approxi-
mation, in tracking moving objects, and in many other
tasks in machine vision.

In many approaches to 2-D object recognition, objects
are represented by their boundaries, and the recogni-
tion techniques depend (directly or indirectly) on locat-
ing distinguished points along the boundary; typically
these distinguished points are discontinuities or extrema
of local curvature (sometimes called “corner points”) and
inflection points [e.g., Mokhtarian86]. “Corners” on the
contours of imaged objects are often used as features for
tracking the motion of these objects and for comput-
ing optical flow {e.g. Mehrotra90]. In 3-D recognition,
partitioning is typically one of the first analysis steps -
especially when objects can occlude each other. Hoffman
and Richards [Hoffman82] argue that when 3-D parts are
joined to create complex objects, concavities will gener-
ally be observed in their silhouettes, and that segmen-
tation of image contours at concavities ( the maxima of
negative curvature along the contours) is a good strat-
egy to decompose (even unmodeled) objects into their
“natural parts.”

In cartography, computer graphics, and scene anaysis,
it is often desirable to partition an extended boundary
or a contour into a sequence of simply represented prim-
itives (e.g., straight line segments or polynomial curves
of some higher degree) to simplify subsequent analysis
and to minimize storage requirements [e.g., Teh89].

In our own current work concerned with delineating
linear structures in aerial images, the technique pre-
sented in this paper was an essential component of the
system (briefly described in Appendix C) that produced
the results displayed in Figure 6.




2. Problem Statement

In its moset general sense, partitioning involves assign-
ing, to every element of a given "object” set, a label
from a given "label” set. For our purposes in this pa-
pez, the object set is the set of points along » curve (or
contour segment) lying in a prescribed region of a two-
dimensional plane. While we deal with cases where the
points in the object set do not form a continuous dig-
ital curve, in most of our exposition in this paper we
will assume that the curves are continuous ! and non-
intersecting. Our label set is binary, points will be called
either significant (critical) or non-significant, for some
specified purpose. In Fischler and Bolles [Fischler86),
it is demonstrated (or at least argued) that perceptual
partitioning is not independent of some assumed task
or purpose. In this paper we focus on one of the three
tasks discussed in the above reference: Selecting a small
number of points (called critpts) along a curve segment
which could be used as the basis for reconstructing the
curve at some future time. Figure 1 shows the specific
instructions and curves used in one set of relevant exper-
iments invoiving human subjects; this figure also shows
the critpts that were selected by the subjects, and the
comparable results produced by our algorithm (called
the Saliency Selection System, or SSS, and discussed in
Appendix B).

In order to separate the generic partitioning criteria
used by human subjects from criteria based on their
past experience, such as when the subject is able to as-
sign a name to the curve (e.g., the curve looks like the
letter "s”), we used "random” curve segments for our
experiments; the technique employed to generate the
segments is described in Appendix A. We also wanted
to avoid having to deal with the recognition of global
features (e.g., symmetry or repeated structure, or even
straight lines and analytic curves) as a condition for mak-
ing critpt selections; avoiding this problem is justified if
we are correct in our belief that local and global anal-
ysis are accomplished by separate mechanisms. In or-
der to deal with global features, the complexity of any
solution would be expanded enormously since a whole
new vocabulary of such features and their representa-
tions would have to be implemented. The generation
and use of random curves took care of this problem also
(i.e., it is highly unlikely that symmetries or repeated
structure would ever be generated by our random pro-
cess).

3. Relevance, Prior Work, and Critical
Issues

The partitioning problem has been a subject of in-
tense investigation since the earliest work began in ma-

1Each point of the non-branching one pixel wide curve, with
coordinates (x,y), bas one or more neighbors with x-coordinates in
the set (x+1, x, x-1), and y-coordinates in the set (y+1, y, y-1).

chine vision. It has been widely assumed that in order
to reduce the combinatorics of scene analysis to a man-
ageable level, it is necessary to decompoee images into
their meaningful component parts as one of the first steps
in the analysis process. The difficulty arises from the
need to partition the image into parts before we know
the identity of those parts. The underlying assumption
then is that there are generic criteria, independent of the
goal of the analysis, that if discovered, could be used to
obtain useful (or at least, intuitively acceptable) parti-
tioning; additional problem dependent criteria could be
always added to produce a more relevant result for some
particular purpose.

The partitioning problem becomes progressively
harder as we increase the number of dimensions in which
we are working; in this paper we only address the 1.5-D
problem of partitioning planar curves. A specific crite-
rion which can form the basis of such partitioning was
originally proposed by Attneave [Attneave54) — points
at which the curve bends most sharply are good parti-
tion points. 2 This idea has been the starting point for
most of the subsequent efforts in curve partitioning, but
attempts to convert this abstract concept into a com-
putationally executable procedure, that gives intuitively
acceptable results, has meet with limited success. 3 Ref-
erences [Imai86, Mokhtarian86, Pavlidis74, Rosenfeld73,
Teh89, Wuescher91) are representative of work in this
area. 4

The main problems we must solve are:

(a) A way of assigning a measure (or degree) of
saliency/criticality ® to each point on a curve.
Most investigators have equated sharp bending of
a curve with the mathematical concept of curva-
ture, but curvature is not well-defined for a finite
sequence of points (which is how our sensor ac-
quired curves are generally represented). Further,
it is not obvious that the mathematical definition
of curvature is the best computational approxima-
tion to the human criteria for criticality. In Fis-
chler and Bolles [Fischler86), bending is interpreted

3Hoffman and Richards [Hoffman82) give convincing evidence
that we should distinguish between positive and negstive curva-
ture maxima. That is, on closed curves, extreme points of nega-
tive curvature ~ associated with object concavities — have greater
utility as partition points than pasitive curvature maxima, but the
positive maxima (and inflection points) play an important role in
describing the individual segments.

3As noted later, mosat of the work on the curve partitioning
problem, especially recent work, has not been concerned with du-
plicating generic human performance, but rather with performing
specific visual tasks having different criteria for success.

4The approach taken by Wuescher and Boyer is distinct in that
they first extract contour segments of approximately constant cur-
vature and then infer the location of partition points as a secondary

SWe will use the terms saliency and criticality somewhat inter-
changeably in this paper. However, saliency can be considered to
be the generic subset of points that are critical for some partition-
ing task.




as deviation from straightness - it is closely related
to proposed approximations to mathematical cur-
vature, as illustrated in Figures 2 and 3, but has
a number of advantages: it is an easily measured
quantity, even for digital curves (i.e., sequences of
coordinate pairs), and as discussed in the next sec-
tion, its local extrema are in better accord with hu-
man preference (choices based on approximations
to the definition of mathematical curvature occa-
sionally include anomalous points as shown in the
examples of Figures 2 and 3).

(b) A way of adjusting the criticality of a given curve-
point to take into account its interactions with its
neighbors; i.e., local context. It is obvious that
human subjects will often avoid assigning a critpt
label to both members of a pair of points, even when
both points have high (independent) criticality val-
ues, if the points are close neighbors along the curve.
The basic approach of local non-maximum suppres-
sion is not sufficient, in itself, to duplicate human
performance.

(c) A way of dealing with the interactions between
critpts that are significant at different sc:les of
resolution. If a human subject looks through a
fixed sized window at the same curve segment dis-
played at two different magnifications, the selected
critpts will not always be the same, and the selection
at the lower resolution will not always be a subset of
those at the higher resolution (e.g., Figure 4). This
is in contrast to the commonly held assumption that
critpt assignment should be independent of ”scale of
resolution.”

(d) A threshold of significance; a minimal level of
criticality below which variations are considered to
be noise and no critpt designations are made. (Some
investigators reject the idea that any user supplied
parameters or thresholds should be necessary.)

We have addressed the above issues through the solu-
tions to a set of subproblems:

1. Definition of an algorithmic procedure (which is pa-
rameterized to deal with noise and scale) for assign-
ing criticality values to each point on a curve in-
dependent of decisions made about the locations of
(other) critpts. The solution to this problem, es-
sentially the procedure given in Fischler and Bolles
{Fischler86), provides answers at a human level of
performance for isolated critpts (i.e., along a sec-
tion of a random curve, generated as described in
Appendix A, for which human subjects select only
one critpt). Thus, for the domains we experimented
with (and especially the domain defined in Ap-
pendix A), we were able to assign fixed values to
scale/resolution and noise/significance parameters

so that our program would make the same selections
as human subjects when there was near unanimous
agreement among these subjects. This algorithm is
described in Appendix B.

2. An analysis of how geometric scaling of the in-
put curve, and resolution specific operations on the
curve, can be equated, and thus the development of
a basis for normalizing criticality scores across scale.

3. Development of a general approach to the problem
of resolving the competition/cooperation interac-
tions of geometrically related objects based on "lo-
cal dominance.” The same machinery used to deal
with interactions at a given scale of resolution is
also used to resolve conflicts across different scales
of resolution.

In the remainder of this paper, we describe our so-
lutions to the problems enumerated above, and then
present examples and experimental results to justify the
design decisions we made and to illustrate the perfor-
mance capabilities of our algorithm.

4. Evaluation of Saliency

Saliency is a critical attribute (for description and
recognition) assigned to perceived things in the world
by the human visual system (HVS). While an elusive
concept in general, task specific specializations of this
concept are easily found that elicit consistent choices
across human subjects. An acceptable computational
definition of contour/curve saliency must provide °

o The specification of a procedure that quantifies the
abruptness and extent of the deviation of a curve
from its straight-line continuation; a sharp bend is
more salient than a shallow one, and the greater
the excursion, the more prominent/salient the "fea-
ture.”

e Agreement with human judgement in terms of both
selection, and accuracy of placement, of the critical
points (in some well defined context).

41 A Computational Definition of
Saliency

Conventional definitions of curvature present a num-
ber of serious problems with respect to their use as a
saliency measure in computational vision (CV). First,
the mathematical definition is based on the properties
of a curve in the infinitesimal neighborhood about the

®In this paper we are primarily concerned with saliency based
on loce! cues; locations on a curve where there is a transition
from one type of curvature behavior to another, e.g. from per-
fectly straight to "wiggley," may also be psychologically salient,
but such forms of global ssliency are beyond the scope of our cur-
rent investigation.
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as deviation from straightness - it is closely related
to proposed approximations to mathematical cur-
vature, as illustrated in Figures 2 and 3, but has
a number of advantages: it is an easily measured
quantity, even for digital curves (i.e., sequences of
cootdinate pairs), and as discussed in the next sec-
tion, its local extrema are in better accord with hu-
man preference (choices based on approximations
to the definition of mathematical curvature occa-
sionally include anomalous points as shown in the
examples of Figures 2 and 3).

(b) A way of adjusting the criticality of a given curve-
point to take into account its interactions with its
neighbors; i.e., local context. It is obvious that
human subjects will often avoid assigning a critpt
label to both members of a pair of points, even when
both points have high (independent) criticality val-
ues, if the points are close neighbors along the curve.
The basic approach of local non-maximum suppres-
sion is not sufficient, in itself, to duplicate human
performance.

(c) A way of dealing with the interactions between
critpts that are significant at different scales of
resolution. If a human subject looks through a
fixed sized window at the same curve segment dis-
played at two different magnifications, the selected
critpts will not always be the same, and the selection
at the lower resolution will not always be a subset of
those at the higher resolution (e.g., Figure 4). This
is in contrast to the commonly held assumption that
critpt assignment should be independent of *scale of
resolution.”

(d) A threshold of significance; a minimal level of
criticality below which variations are considered to
be noise and no critpt designations are made. (Some
investigators reject the idea that any user supplied
parameters or thresholds should be necessary.)

We have addressed the above issues through the solu-
tions to a set of subproblems:

1. Definition of an algorithmic procedure (which is pa-
rameterized to deal with noise and scale) for assign-
ing criticality values to each point on a curve in-
dependent of decisions made about the locations of
(other) critpts. The solution to this problem, es-
sentially the procedure given in Fischler and Bolles
[Fischler86], provides answers at a human level of
performance for isolated critpts (i.e., along a sec-
tion of a random curve, generated as described in
Appendix A, for which human subjects select only
one critpt). Thus, for the domains we experimented
with (and especially the domain defined in Ap-
pendix A), we were able to assign fixed values to
scale/resolution and noise/significance parameters

so that our program would make the same selections
as human subjects when there was near unanimous
agreement among these subjects. This algorithm is
described in Appendix B.

2. An analysis of how geometric scaling of the in-
put curve, and resolution specific operations on the
curve, can be equated, and thus the development of
a basis for normalizing criticality scores across scale.

3. Development of a general approach to the problem
of resolving the competition/cooperation interac-
tions of geometrically related objects based on "lo-
cal dominance.” The same machinery used to deal
with interactions at a given scale of resolution is
also used to resolve conflicts across different scales
of resolution.

In the remainder of this paper, we describe our so-
lutions to the problems enumerated above, and then
present examples and experimental results to justify the
design decisions we made and to illustrate the perfor-
mance capabilities of our algorithm.

4. Evaluation of Saliency

Saliency is a critical attribute (for description and
recognition) assigned to perceived things in the world
by the human visual system (HVS). While an elusive
concept in general, task specific specializations of this
concept are easily found that elicit consistent choices
across human subjects. An acceptable computational
definition of contour/curve saliency must provide ¢

o The specification of a procedure that quantifies the
abruptness and extent of the deviation of a curve
from its straight-line continuation; a sharp bend is
more salient than a shallow one, and the greater
the excursion, the more prominent/salient the "fea-
ture.”

e Agreement with human judgement in terms of both
selection, and accuracy of placement, of the critical
points (in some well defined context).

4.1 A Computational Definition of
Saliency

Conventional definitions of curvature present a num-
ber of serious problems with respect to their use as a
saliency measure in computational vision (CV). First,
the mathematical definition is based on the properties
of a curve in the infinitesimal neighborhood about the

%In this paper we are primarily concerned with saliency based
on locsl cues; locations on a curve where there is a transition
from one type of curvature behavior to another, e.g. from per-
fectly straight to "wiggley,” may also be psychologically salient,
but such forms of globel saliency are beyond the scope of our cur-
rent investigation.




point at which curvature is being measured. For the fi-
nite precision quantized curves dealt with in CV, it has
been difficult to find a suitable approximation to the
limiting process originally intended for use on mathe-
matically conlinuous curves. Second, it is readily ob-
served that saliency is not an infinitesimal point prop-
erty, but is based on some finite extent of the curve. A
proposed solution to both problems, offered by Rosenfeld
and Johnston [Rosenfeld73] was to find an appropriately
sized segment of the curve about the point in question,
and take a "snapshot” of the limiting process at this
single (implied) scale. That is, rather than the rate of
change of tangent angle with respect to curve length,
R/J proposed measuring the angle between two fixed
length chords, where the lengths correspond to the com-
puted "natural scale” of the curve about the given point.
We will call this curvature-analog the R/J-Curvature.
There are a number of other definitions of mathemati-
cal curvature (e.g., the limiting radius of a circle whose
three defining points converge at the curve-point in ques-
tion) which have analogs that could have been used in
place of the angle measure in R/J-Curvature but these
definitions are monotonically related, and do not really
present distinct alternatives. Thus, R/J-Curvature is a
suitable representative for the whole class of mathemat-
ical curvature-measure analogs.

In Fischler and Bolles [Fischler86), our concern was
not to find a good digital analog for curvature, but rather
to find an effective measure of saliency. The quantity
defined in that paper can be viewed as a curvature-
extremum measure in which the limiting process (in
scale) is replaced by a scanning process (in space) more
appropriate to digital curves. The scanning process is
parameterized by scale, and the resulting measure is a
signed quantity which we call F/B-Saliency (F/B-S).

While the particular choice of a curvature measure
as a component in a complete system for selecting the
most salient points (critpts) on a planar curve depends
on many factors, it is still interesting to compare the raw
scores returned by curvature-analogs represented by the
R/J-Curvature with the extreme points (ultimately) se-
lected by our algorithm (SSS) as shown in Figures 2 and
3 for a randomly generated curve. In these figures we
observe problem situations that highlight some of the
differences between the two underlying metrics (R/J-
Curvature and F/B-Saliency). 7

There are some problems with any raw measure of cur-
vature that must be dealt with by using procedures that

"In both of the figures, we used fixed common scale parame-
ters for both metrics as noted in the figure captions. It should be
remembered that R/J-curvature, as we define it in this paper, is
representative of a whole class of curvature-based metrics and is
not intended to duplicate the complete Rosenfeld/Johnston algo-
rithm - they also incorporate a procedure for finding a preferred
stick length. However, many of the problems with the performance
of the complete algorithm, which are discussed in Davis77 and in
other of the papers we reference, can be observed in the perfor-
mancs of the R/J-Curvature metric.

invoke (at least) local contezt. For example, in Figure 3
we see a case (double arrow) where two critpts were se-
lected at almost adjacent locations along the curve. This
undesirable behavior was not eliminated by the simple
" pon-maximum suppression” filter that produced good
results in most other situations. It is necessary to use
more specific criteria in deciding when two critpts are
too close together, and also, what to do when the ad-
jacent points have equal saliency scores (e.g., arbitrar-
ily eliminate one of them or eliminate both and place
a new critpt between them). In Figure 3 we see cases
(two single arrows) where almost invisible features were
chosen as critpts because they did have locally extreme
curvature scores; how do we decide when to reject such
occurances. In Figure 2 we see a case where a critpt (des-
ignated by an arrow) was inserted at a location displaced
from the position we consider correct; this was due, in
part, to the length of the arms of the angle measuring
"aperator” relative to the size of the feature (see Figure
2d) - it is not always possible (or practical) to find an
appropriate operator size for every potential feature. In
the following sections (and appendices) of this paper we
describe and justify the methods we employ to deal with
these problems. The issue we are primarily concerned
with in this section is the choice of a basic saliency met-
ric. We justify our preference for the F/B-S metric on
two grounds:

1. Unlike the fixed scale mathematical (FSM) curva-
ture analogs (e.g., R/J-curvature), F/B-S rarely
makes an error in positioning a critpt, or in ignoring
a salient point that human observers would select.
The issue here is robustness, F/B-S integrates infor-
mation over an extended set of "looks” at the curve
segment containing the point whose saliency is be-
ing measured. FSM techniques take a single look
at the situation. Thus, our main problem with the
F/B-S metric is selecting the most salient of the se-
lected critpts to be retained as our final result (the
filtering operation generally involves the elimination
of less than half of the points originally selected).

2. The F/B-S metric is responsive to both the curva-
ture and the size of a curve "feature.” This pro-
vides a common basis for ranking critpts at a given
scale (so that the larger of two geometrically sim-
ilar objects is assigned a higher saliency score) as
well as across scales by taking into account the size
of the operator. The FSM-curvature analogs are
insensitive to the size of the feature — they inherit
the mathematical property that curvature is a point
property and only the smallest neighborhood about
a point that allows us to measure curvature is rel-
evant (this implies a single "natural scale” at any
point on a curve; a concept we reject, e.g., see Fig-
ure 4).




4.2 Comparison of the Saliency Selection
System (SSS) with Human Performance

The primary criterion for judging the competence of
the overall saliency selection system (SSS) we present
in this paper is its ability to match human performance
- both in the defined task and with respect to generic
evaluation of the selected critpts. We performed a set of
informal experiments with 11 human subjects (also see
the experiments described in Fischler86). The instruc-
tions given to the subjects and the resulting selections
are shown in Figure 1. We also show the selections made
by the SSS algoritam. The results of these (and addi-
tional but not described) experiments can be summa-
rized as follows

e At least 9 of the 11 subjects selected the same set
of six or more critpts on each of the four curves we
used in the experiments, and the SSS chose the same
set of critpts. Every critpt selected by the SSS was
also selected by at least one human subject.

o In spite of the high degree of consistency in the
overall selection of salient points, the human sub-
jects differed in the order in which they chose these
points. We tried a number of experiments in which
the only difference was a very slight change in the
wording of the instructions, and obtained different
orderings (across the same set of selected points)
from our subjects. It is obvious that the subjects
used a global strategy to match the task (differ-
ent for each subject) to choose the order in which
the points were selected ~ even though the specific
points selected were largely determined by local con-
text.

In addition to the curves used in the human experi-
ments, we ran the SSS algorithm on (the order of) 1000
randomly generated curves with no obvious errors. Fig-
ure 5 shows the results of a (typical) sequence of 40 con-
secutive experiments.

5. Dealing with the Problems of Scale
and Resolution

A vision system, concerned with creating a descrip-
tion of some object that may be encountered again in
the future, perhaps when the object is closer or further
away, must take scale or magnification into account when
deciding what shape elements to pay attention to. Un-
der extreme changes in resolution, when salient features
might appear or disappear, it may not be possible to
make aa informed judgement in the assignment of rela-
tive saliency scores; but for a limited range about a given
resolution, this should indeed be possible.

Obviously, geometric properties of objects that are in-
variant over scale are especially valuable in describing
and recognizing the objects, since absolute scale is of-
ten impossible to judge in an image, and even relative

scale can be difficult to describe or measure if the mea-
surement must be referenced to the global geometry of
the object. One of the main issues we address in this
paper is how to define extrema in the "bending” of a
curve as a local effectively scale-invariant property that
is in agreement with the judgement of the human visual
system.

If we define criticality of points on a digitally rep-
resented curve in terms of quantities that have dimen-
sions that must be measured by some physical process,
then there is no direct way of invoking such formally
defined mathematical concepts as the derivative, or cur-
vature, which require limiting processes of infinite reso-
lution. Approximations to these concepts are resolution
dependent (e.g., the size of the operator employed) and
measurements made on most objects will not "scale” in
any simple or uniform way. Further, if we examine a
curve through a fixed size window (either a fixed region
of a computer screen, or the foveal region of the hu-
man retina), and we successively increase the resolution
at which the curve is displayed, some of its parts will
eventually disappear from view, and some of the smaller
original structures, that were not significant, wiil now
dominate the visible appearance of the curve (e.g., Fig-
ure 4).

If the mathematical definition of curvature were ap-
plicable to digital imagery, then many (but not all) of
the issues of scale could be resolved. There is still the
problem that a very small "glitch” can have a very high
value of curvature but a very low psychological signifi-
cance. Thus the scale or size of a "feature” (e.g., the
glitch) is an issue. The term "feature” does not appear
in our problem definition; in fact, by focusing on local
curve properties, we had hoped to eliminate the need to
invoke this concept since an appropriate definition is far
from obvious. 3 Since scale can’t be ignored (even if
we had a good approximation for curvature in the digi-
tal domain that was independent of scale) the following
questions arise:

o The distinction, if any, between resolution and scale

o How to choose a range of scales appropriate to the
specified performance criteria

¢ How to measure criticality at different scales

¢ How to compare criticality values computed at dif-
ferent scales

e The relationship between smoothing and scale
change

$Intuitively, there are sections of any given curve that we call
features; these entities provide the psychological basis for the se-
lection and relative saliency of the associated critpts. Critpts are
markers that define the shape and boundary of features ~ the ex-
tent of the curve corresponding to & festure will generally sub-
sume the "region of support” for the curvepoints comprising the
feature. Features can overiap, and their boundaries are not always
apparent.




¢ The relation between operator size and scale change

¢ How to make cooperation/competition judgements
across scales

e How to determine the features for which we ex-
pect consistency (of criticality scores) to hold across
scales, and where such consistency can’t be expected
(if the latter were never the case, we could always do
our analysis at one scale and compute the criticality
values at other scales as needed).

While consistency at all scales and for all features is
not possible, over some range of scales (say 5:1) we ex-
pect there to be a "normalization” factor which allows
us to compare the saliency scores computed at one scale
with values computed at other scales. We would also
expect that relative locations of local extrema for cer-
tain features would remain fixed as a curve is scaled,
regardless of the size/scale of the operator that assigns
the criticality scores.

Some of the earliest work (e.g., Rosenfeld and John-
ston) on fincing salient points merged the problem of
assigning a curvature measure to a point with that of de-
termining the scale at which to measure curvature. The
key idea is that each point has a single scale at which
its curvature should be measured ~ this scale is usually
found by a search process over successively larger scales
until some measured quantity achieves a local extremum.

5.1 Change of Scale Vs. Change of Res-
olution

If we magnify a continuous curve that was originally
represented at infinite precision, every point of the new
image corresponds to a point in the original image, but
its x and y coordinate values have been multiplied by
some real number which we will call the scale factor.
No information was introduced nor lost, but the phys-
ical space required to render the curve has increased.
However, if the original curve was represented at finite
resolution (e.g., each point as a pair of integer coordi-
nates), then (say) doubling the scale leaves us with a
disconnected set of points. Filling in the gaps requires
introducing new information. Here we will say that a
change of resolution has occurred (a change in resolu-
tion can also result in the loss of information, as in the
case of demagnification or smoothing at some fixed reso-
lution). Thus, the concept of a scale change corresponds
to a reversible transformation, while, in general, a change
in resolution involves an irreversible process in which in-
formation is lost (as in smoothing), or new information
is introduced (as can occur in zooming).

If we compute the curvature for points on a continuous
(infinite resolution) curve at two different scales, we will
generally get two distinct sets of values (e.g., a circle
with radius 2 is a scaled version of a circle with radius
1, but by definition, their curvatures are in the ratio
1:2. On the other hand, the angles of a triangle remain

unaltered under a scale change). It will be the case,
however, that for smooth curves, the local extrema will
be found at corresponding locations - but even here, the
numerical values of curvature will not scale in any simple
way (curvature is a nonlinear function).

5.2 S8SS Mechanisms fo- Evaluating
Saliency at Different Scales and Resolu-
tions

In designing a computational module to evaluate
saliency subject to the ideas discussed above, we can
pursue at least three distinct strategies:

1. Assume that saliency is independent of scale, or that
there is a natural scale associated with each location
on the curve that must be discovered.

2. Use a fixed scale saliency measure, but generate
multiple versions of the given curve at some pre-
determined set of scales.

3. Parameterize the saliency measure to give results
approximating those that would be obtained from
strategy (2) for the selected scales.

We previously argued against strategy (1) on the as-
sumption that a unique natural scale cannot generally
be associated with a single curvepoint (see Figure 4).
We have chosen strategy (3) since strategies (2) and (3)
are conceptually compatible, but (3) could be compu-
tationally more efficient if we can find a simple way to
use some combination of operator scaling and score nor-
malization so that both approaches give (nominally) the
same scores in most situations. Intuitively, doubling the
stick length (in the F/B-S metric) for a simple <onvex
section of a curve should result in four times the score
assigned to the corresponding critpt: The stick is now
posit_iégned twice the distance from the critpt in most of
its "looks” (i.e., placements of the stick which subsume
a curve segment containing the critpt), and there are
twice as many looks. Thus, the procedure we employ,
normalizing all scores by dividing by the square of the
sticklength, will leave invariant the saliency scores as-
signed to features which should be scale invariant, such
as the angle formed by two (effectively) infinite straight
lines. On the other hand, for those features that have
limited extent along the curve, comparable to the scales
we wish to discriminate among, the larger scaled versions
of the features will be assigned higher scores.

6. Cooperation/Competition Interac-
tions Between Critical Points

An important contribution of this paper over the work
presented in Fischler and Bolles (Fischler86] is a major
revision of the approach to filtering the critpts, based
both on comparisons at a given scale as well as across
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different scales. At a conceptual level, there are two main
differences.

First, in the earlier work we did not use the informa-
tion about the sign (concavity/convexity) of the com-
puted F/B-Saliency; in our current algorithm, we sepa-
rate all the candidate critpts into two sets correspond-
ing to positive and negative F/B-S. ® These two sets
are processed independently of each other (by identical
procedures) and the resulting selections are combined by
logical union to produce the final output. Our own obser-
vations confirm those of other researchers (e.g., Hoffman
and Richards), that positive and negative curvature ex-
trema appear to be distinguished from each other by the
HVS, in part because they play different roles in parti-
tioning and description tasks.

Second, in the earlier work we used a simple "domi-
nance” criterion for competition of closely spaced critpts
detected at different scales.. A critpt detected at some
given scale would suppress all critpts detected at smaller
scales (shorter "sticklength”) that were located within a
specified scale related distance from it. This rule rarely
produced "ugly” errors, but occasionally caused the ob-
viously correct critpt to be deleted in favor of one slightly
displaced from the preferred location. A significant por-
tion of the work described in this paper has been fo-
cused on finding a more effective and uniform basis for
establishing "local dominance.” In other sections of this
paper we provided a justification for a normalization fac-
tor which would permit us to assign a saliency ranking
to competing critpts, regardiess of the scale at which
they were originally detected. Thus, competition, both
within and across different scales is now treated in a
uniform manner. In the following subsection we discuss
some of the specific problems that must be resolved in
competition resolution, and the algorithmic procedures
we invoke to deal with these problems.

6.1 Mechanisms for Filtering Competing
Critpts

One of the algorithmic mechanisms we devised to deal
with the above problems (described in greater detail in
Appendix B) is to construct an array with one slot for
each indexed location along the curve (conceptually two
such arrays, one each respectively for positive and nega-
tive saliency scores). Each slot is either free or ”owned”
by exactly one critpt. A critpt occupies only one of the
slots it owns — this occupied slot corresponds to its actual
location along the curve. A "new” critpt, !° contending
for a slot, must have a normalized score greater than the

9For an open curve segment, the assignment of positive vs. neg-
ative is arbitrary; the importan: ~onsideration is that we use the
information about the direction of devistion of the curve from the
stick to separate detected critpts into the two possible categories
which are then processed separately.
10 A1l the potential critpts are detected, sorted, and then entered
into the array in increasing order of saliency to avoid sequence
dependant effects.

existing value stored in the slot to capture it. If a new
critpt captures a slot occupied by (as opposed to sim-
ply being owned by) a previously dominant critpt, all of
the slots of the now dominated critpt are also captured.
This mechanism provides a way of avoiding the need to
choose a fixed-sized "base of support” for a critpt.

7. Algorithm Performance

The algorithm discussed in the previous sections of
this paper, and described in Appendix B, has been com-
pared with human performance (Figure 1), and has been
run on hundreds of randomly generated images (as de-
scribed in Appendix A) without making any obvious er-
rors. In all these cases the same set of parameters were
used with no operator involvement. Figure 5 shows 40
consecutively generated random curves and the critpts
selected by the algorithm. Figure 6 in Appendix C shows
results of the algorithm run on curves extracted from real
images.

8. Discussion

Curve partitioning is an active research area which
not only is of theoretical interest as a basic element in
pictorial description (e.g., Attneave, B~ngtsson and Ek-
lundh, Hoffman and Richards), and for providing insight
into the partitioning problem in general (e.g., Fischler
and Bolles), but has many potential applications. Some
of the more immediate ones include: data compression
by using critpts as the basis for regenerating a curve
by straight line or spline interpolation (e.g. Imai and
Iri, Teh and Chin), matching/recognition using critpts
and/or the partitioned curve segments (e.g., Mokhtar-
ian and Mackworth, Wuescher and Boyer), and as a key
component of an interface for man-machine communi-
cation about pictorial objects (the ability to point at
icons representing symbolic objects has revolutionized
the computer-user interface; to extend this capability,
one would like to be able to point to a location in an
image and have the machine be able to deduce the com-
ponent being referred to -~ image partitioning in gen-
eral, and especially curve partitioning, are critical to this
goal).

In this paper we have focused on one specific aspect
of the curve partitioning problem: Duplicating human
performance in the selection of a small number of points
(called critpts) along a curve segment which could be
used as the basis for reconstructing the curve at some
future time. While there will generally be a significant
degree of overlap in the points selected by the tech-
niques referenced above (focused on different applica-
tions), there are also significant differences. There has
been very little recent work on the generic problem of
choosing psychologically salient points with which to di-
rectly compare our results. On the other hand, we have
conducted a relatively large number of experiments with




uniformly good results (e.gz., see Figure 5).

There are two major paradigms !! underlying the pub-
lished work on partitioning planar curves. The first in-
volves obtaining a mathematically differentiable repre-
sentation of the given digital curve by the use of splin-
ing or Gaussian convolution (e.g., Mokhtarian86). This
gives good results for many applications, but the salient
points on the smoothed curve are often displaced from
their original locations (or eliminated). This paradigm
is not suitable for our purposes in this paper.

The second paradigm, which includes the work de-
scribed here, is to first measure some approximation to
the curvature at each point on a curve. This usually in-
volves choosing, or finding, an appropriate scale at which
to make the curvature measurement. This is typically ac-
complished by making the curvature measurement over
increasingly larger curve segments (centered on the curve
point being evaluated) until either the computed curva-
ture at the point, or some related quantity, reaches a lo-
cal extrema. Each point is assigned a saliency/criticality
value (its estimated curvature) and an interval length
along the curve centered on the point (called its re-
gion of support). The region of support is then used for
non-maximum suppression — each point suppresses other
points with lower criticality scores falling in its region of
support.

Major differences between our approach and other
work under this second paradigm include:

e A generic saliency measure which often selects
points corresponding to local curvature extrema,
but which in many situations is in better accord
with human selection preference and placement ac-
curacy.

o A distinct approach to the problem of dealing with
curve features salient at different scales. The con-
ventional approach is to associate a single scale with
each curve point which in turn defines a fixed re-
gion of support to be used for non-maximum sup-
pression. In our approach, we measure the saliency
of each curve point at a number of different scales,
and have developed procedures for allowing poten-
tial critpts, found at different scales and spatial loca-
tions to compete !? with each other. This competi-
tion is not restricted to any fixed extent of the curve
(which thus avoids anomalous selections caused by
an important event occurring just beyond the fixed
limit of search, i.e., the Aorizon effect).

11 Additional approaches are svailable for partitioning 1-D
curves; for example, see Fischler and Wolf (Fischler83] or Witkin
[Witkin83]. As noted in Appendix B, the 1-D partitioning tech-
nique in the Fischler83 referenceis used as a component of the SSS
algorithm.

131¢ is interesting to note that we have not found a use for coop-
erative reinforcement - cooperation appeara to be a global relation.
Competition is important at the local level (e.g., lateral inhibition)

Our approach to local saliency selection can be con-
sidered a form of automated preattentive perception.
Potential extensions could include dealing with more
global curve features, such as recognizing the intersec-
tion of extended straight line segments, or tranmsition
points between analytic curves with different parame-
ters, or global symmetries and repeated structure. Rec-
ognizing these more global structures, and ranking them
with respect to human perceived saliency, may well fall
outside the competence of the basic approach described
in this paper.

9. Appendices

9.1 Appendix A: Generation of Random
Curves

The following method was used to construct the ran-
dom curves used in the experiments described in the
body of this paper.

(1) Thirty (x,y) pairs are generated for each curve.
Each value of x and y are generated by a uniform-
distribution (0-1) random-number generator and then
multiplied by 100 to produce numbers (coordinate-
values) uniformly distributed between 0 and 100.

(2) The thirty points are next linked by a minimal-
spanning-tree (MST).

(3) A diameter path is extracted from the MST, and
the ordered subset of the original randomly generated
points that fall along this diameter path are the input
sequence provided to a spline-fitting routine [Cline74]
which returns a continuous curve represented by a se-
quence of (x,y) coordinate pairs. These sequences, typ-
ically containing on the order of 150-250 points, are the
random curves used in our experiments.

9.2 Appendix B: An Algorithm For
Computing Curve-Point Criticality

The partitioning algorithm described in Fischler and
Bolles [Fischler86] has been modified and extended as
summarized below.

The algorithm collects candidates (peaks) for the crit-
ical points of a curve by examining the deviation of the
points of the curve from a chord or ”stick” that is it-
eratively advanced along the curve. Sticks of different
lengths are used to find critical points that are salient
at different "natural” scales on the given curve. (Except
when explicitly stated otherwise, two sticks were used
for all the experiments discussed in this paper; one of
length 10 pixels and the other of length 20 pixels.) The
algorithm provides the option of using arc-length along
the curve, or the euclidean length of the stick, to de-
termine the separation of the endpoints of the stick on
the curve; we used the euclidean length of the stick for
all of the experiments discussed in this paper. One end
of the stick is advanced along the curve, one pixel at a
time, and the other end is placed at the first (sequential)
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position further along the curve for which the Euclidean
distance equals or exceeds the specified stick length.

For each placement of the stick, an accumulator asso-
ciated with the curve-point (in the interval of the curve
between the two endpoints of the stick) of maximum
deviation from the stick is incremented by the absolute
value of the distance from the point to the stick if this
distance exceeds a predefined noise threshold. However,
for the given stick placement, if there is more than one
excursion (exit and return) outside the noise region, the
underlying model is violated and the accumulators are
not incremented. (The noise threshold was uniformly
set to 20 percent of stick length; thus a euclidean devi-
ation of more than 2 ”pixels” from a stick of length 10
was required to cause any modification of the associated
accumulator.)

To deal with direction dependent effects, a complete
traverse is made in both directions along the curve sum-
ming the results in the same accumulators. The points
which have locally maximum scores in the accumnulators
(called peaks) for any of a given set of sticks are the
points from which the critical points will be selected.

The following information is collected for each peak
and used to find the critical points:

o INDEX: the sequence number along the curve of the
point at which the peak was located.

e STICK: the length of the stick (in pixels) used to
find the peak.

e DEV: the sign of the deviation of the peak with
respect to the curve.

o NSCORE: the "normalized” score which is the score
in the accumulator for the peak divided by the
square of the stick length.

The peaks are divided into two groups with like-signed
deviation DEV. The critical points for the two groups
are found independently of each other and their union is
returned as the set of critical points for the curve.

In finding the critical points, we stipulate that each
peak’s score has a region of support, plus and minus half
its associated stick length, on each side of its position
along the curve. An array (the support array) equal to
the length of the curve is used to store the support in-
formation. The support information for a peak is a list
(NSCORE INDEX STICK). For each peak, the support
information may be entered at every index location cov-
ered by the region of support depending on what was
pteviously stored in the location.

For all locations in the support region for the new
peak (in the support array), an entry at J is replaced by
the information for the new peak if there is no previous
entry in the array or if the score for the new peak is
> than the score in the existing entry in the array. In
addition, if the entry J is being replaced, and J is also

the INDEX for a peak that was entered previously, the
support information for the new peak replaces the sup-
port information of the old peak wherever it occurs in
the support array (i.e. even outside of the new peak’s
original support region).

After the above processing, the critical points for the
curve are designated as those points whose index into the
support array equals the index stored in the information
list of the array element.

It can be seen that the order in which peaks are en-
tered into the support array can affect the final selection
of the critical points because a peak’s region of support
can be altered by the “capture” process, and thus de-
pends on the state of the support array at the time the
peak is entered. In our implementation of the algorithm
for running the experiments, we entered the peaks into
the support array as soon as they were computed in or-
der to gain computational efficiency and simplicity, and
still obtained excellent results. In the current version of
the algorithm we collect all the peaks for all the sticks,
sort the peaks by their normalized scores, and then enter
them into the support array in order of increasing score.

There are some additional aspects of the algorithm
that are further discussed in the more complete version
of this paper, including ways to handle problems aso-
ciated with very sharp angles and competing critpts of
approximately equal saliency scores,

9.3 Appendix C: Partitioning Curves
Extracted From Aerial Imagery

A technique for detecting and delineating low resolu-
tion linear structures appearing in aerial imagery, such as
roads and rivers, was described by the authors of this pa-
per in an eatlier publication [Fischler83]. The algorithm
was effective in finding such structure, but it provided no
mechanism for distinguishing between the semantically
meaningful objects and the “accidental” and irrelevant
linear features found in most real images. In work now in
progress, we use the SSS algorithm to “slice up” the in-
dividual curves found by the delineation algorithm. We
throw away the very small resulting segments which are
typical of accidental linear formations, and then further
filter the longer segments with respect to a set of seman-
tic constraints. Those segments that pass through the
filtering process are then “glued” back together to pro-
duce the desired delineation. This process is illustrated
in Figure 6. Figure 6a shows an aerial image, and 6b
shows the linear segments extracted by use of the orig-
inal delineation algorithm. Figure 6¢c shows those seg-
ments that passed through the filters mentioned above,
and Figure 6d shows the result of a final step to retain
only the more significant roads and trails. The two panes
of Figure 6e show the results of applying the SSS algo-
rithm to some of the 120 cnrves highlighted in Figure
6b (they have been isolated and separated into the two
panes to allow clear display of the partition points and




to prevent confusion due to the intersections of distinct
curves). The robustness of the SSS algoritmn is essential
in carrying out the filtering operation. Insertion of extra-

neous partition points would cause the |

of portions

of the road network; absence of valid partition points
wauld allow meaningless appendages to become part of
the extracted network.

10.

11.

12.

Gl Il G OGN 0N N G G0 G N 0N BB OGN S 8 B B aE e
[

1.

. LS. Davis, "Understanding shape:

10. References

F. Attneave, "Some informational aspects of visual
perception, "Psychol. Rev. 61:183-193, 1954.

A. Bengtsson and J.O. Eklundh, "Shape Repre-
sentation by Multiscale Contour Approximation,”
IEEE Trans PAMI-13(1):85-93, Jan. 1991.

. AK. Cline, "Scalar- and planar- valued curve fitting

using splines under tension,” CACM 17(4):218-223,
April 1974.

angles and
sides,” IEEE Trans. Comput. C-26:236-242, March
1977.

. M.A. Fischler and R.C. Bolles, " Perceptual organi-

sation and curve partitioning,” IEEE Trans PAMI-
8(1):100-105, Jan. 1986.

. M.A. Fischler and H.C. Wolf, " Linear Delineation,”

Proceedings IEEE CVPR-83, June 1983, pp 351-
356; also, Readings in Computer Vision (M.A. Fis-
chler and O. firschein, eds.), Morgan Kaufmann, pp
204-209, 1987.

. M.A. Fischler and P. Barrett, ” An iconic transform

for sketch completion and shape abstraction,” CGIP
13:334-360, 1980.

. D. Hilbert and S. Cohen-Vossen, ” Geometry and the

imagination.” Chelsea, 1952.

. D.D. Hoffman and W.A. Richards, ”Representing

smooth plane curves for recognition: implications
for figure-ground reversal,” Proc. 2nd Nat. Conf.
Artificial Intelligence, Pittsburg, PA, pp 5-8, Aug.
1982.

H. Imai and M. Iri, "Computational-geometric
methods for polygonal approximations of a curve,”
CVGIP-36(1):31-34, Oct. 1986.

D.G. Lowe, "Organization of smooth image curves
at multiple scales,” Proc 2nd ICCV, pp. 558-567,
1988.

R.  Mehrotra, S.  Nichani, and N.
Ranganathan, ”"Corner detection,” Pattern Recog-
nition 23(11):1223-1233, 1990.

13.

14.

15.

16.

117.

18.

19.

20.

21,

F. Mokntarian and A. Mackworth, "Scale-based de-
scription and recognition of planar curves and two-
dimensional shapes,” IEEE PAMI 8(1):34-43, Jan
1986.

T. Pavlidis and S.L. Horowitz, "Segmentation of
plane curves,” IEEE Trans. Comput. C-23:860-870,
Aug. 1974.

W. Richards and D. Hoffman, "Codon constraints
on closed 2D shapes,” in Human and Machine Vi-
sion II (A. Rosenfeld, ed.), Academic Press, pp 207-
223, 1986.

W. Richards, B. Dawson,, and D. Whittington, "J.
Optical Soc. Amer. 3(9):1483-1491, Sept. 1986.

A. Rosenfeld and E. Johnston, " Angle detection in
digital curves,” IEEE Trans. Comput. C-22:875-
878, 1973.

A. Rosenfeld and J.S. Weszka, "An improved
method of angle detection on digital curves.” IEEE
Trans. Comput. C-24:940-941, Sept. 1975.

C.H. Teh and R.T. Chin, "On the detection of dom-
inant points on digital curves,” IEEE Trans PAMI-
11(8):859-872, Aug. 1989.

A. Witkin, "Scale Space Filtering,” Proc. 8th 1J-
CAl, Karlsruhe, West Germany, pp 1019-1022, Aug.
1983.

D.M. Wuescher and K.L. Boyer, "Robust contour
decomposition using a constant curvature crite-
rion,” IEEE Trans PAMI-13(1):41-51 lan. 1991.




CURVE PARTITIONING: Instructions

For each enclosed curve:

Assume that 10 years from now you will be asked to reconstruct the given curve.
A reasonably correct reconstruction will be rewarded by a large sum of money (say
$5000). You can record, for later use, the locations of up to nine points along the
curve to help you do the reconstruction - but it will cost you $200 for each such
point (to be subtracted from your prize if you receive the reward). Please mark your
selected points on the curve. Do not select the endpoints, they will be provided free.
Do not take more than one minute per curve.

Points chosen by 9 of 11 test subjects

Critical points found by the SSS algorithm

Points chosen by at least 1 of 11 test subjects

Figure 1: Comparison of human and SSS algorithm performance in the curve
partitioning task. (Each of the curves used in the experiments with human
subjects was contained in a square that was 1.5 inches on a side.)




(a) Test curve 189 (b) SSS selected critpts

(c) R/J-curvature (d) Anomalous area
selected critpts (magnified)
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(e) Plot of R/J-curvature along test curve. Abcissa = sequence number of point on curve.
Ordinate = angle (in degrees) computed at point. (Angle-arms are 10 units each for
R/J-C; standard stick lengths of 10 and 20 units are employed by SSS.)

Figure 2: Comparison of SSS and R/J-curvature metrics evaluated on test curve 189.
The continuous curve in (e) represents R/J-curvature along the test curve shown in (a).
The vertical lines in (e) mark the sequentially numbered critpts selected by SSS as shown
in (b). The critpts corresponding to the extreme values of R/J-curvature shown in (c)
are marked as circles in (¢). The arrow in (c), and in the corresponding location in (e),
illustrates an anomalous selection using R/J-curvature. (d) shows the computed values of
R/J-curvature, 153°, at the preferred location and 122° at the location of the anomalous

selection.
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(d) Plot of R/J-curvature along test curve. Abcissa = sequence number of point on curve.
Ordinate = angle (in degrees) computed at point. (Angle-arms are 10 units each for
R/J-C; stick length is 20 units for F/B-S.)

Figure 3: Comparison of SSS and R/J-curvature metrics evaluated on test curve 166.
The continuous curve in (d) represents R/J-curvature along the test curve shown in (a).
The vertical lines in (d) mark the sequentially numbered critpts selected by SSS as shown
in (b). The critpts corresponding to the extreme values of R/J-curvature shown in (c)
are marked as circles in (d). The arrows in (c), and in the corresponding locations in
(d), illustrates anomalous selections using R/J-curvature.




(2) (b)

Figure 4: Curvature and saliency are functions of curve resolution. As illustrated in (a)
above, we can draw more than one visually acceptable tangent to many of the points on this
curve at the given resolution. As resolution increases, tangent 2 would dominate at point x;
as resolution decreases, tangent 1 would dominate at the same point. In (b), the angle at x
can be seen as 45° at one scale and 90° at a larger scale. Thus, curvature and saliency are
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Figure 5: Critical points found by the SSS algorithm for a set of 40 random curves.
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(a) Aerial photograph

(c) Filtered linear structure
using SSS algorithm

(b) Initial extraction
linear structure

of

(d) Delineation of major
roads and trails
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(e) Partition points found by SSS algorithm on curves from (b)

Figure 6: Application of the SSS algorithm to the problem of delineating linear features in

aerial photographs.




Appendix C:

Object-Centered Surface Reconstruction:
Combining Multi-Image Stereo and Shading
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Abstract

Our goal is to reconstruct both the shape and re-
flectance properties of surfaces from multipleimages.
We argue that an object-centered representation is
most appropriate for this purpose because it natu-
rally accomodates multiple sources of data, multiple
images (including motion sequences of a rigid ob-
ject), and self-occlusions. We then present a spe-
cific object-centered reconstruction method and its
implementation. The method begins with an ini-
tial estimate of surface shape (provided by trian-
gulating the result of conventional stereo or other
means). The surface shape and reflectance prop-
erties are then iteratively adjusted to minimise an
objective function that combines information from
multiple input images. The objective function is a
weighted sum of “stereo,” shading, and smoothness
components, where the weight varies over the sur-
face. For example, the stereo component is weighted
more strongly where the surface projects onto highly
textured areas in the images, and less strongly oth-
erwise. Thus, each component has its greatest in-
fluence where its accuracy is likely to be greatest.
Experimental results on both synthetic and real im-
ages are presented.

1 Introduction

The problem of recovering the shape and re-
flectance properties of a surface from multi-
ple images has received considerable attention
[6, 20, 35, 44]. This is a key problem not only in

*Support for this research was provided in part by
various contracts from the Advanced Research Projects
Agency.

developing general-purpose vision systems, but
also in specialized areas such as the generation
of Digital Elevation Models from aerial images
(5, 12, 26, 53)].

In this paper, we view the recovery problem
as one of finding an object-centered description
of a surface from a set of input images that is
sufficiently complete, in terms of its geometric
and radiometric properties, that it is possible
to generate an image of the surface from any
viewpoint. In particular, the description should
be sufficiently complete to reproduce the input
images to within a certain tolerance, given mod-
els of the cameras, their relative locations, and
expected noise.

Our surface reconstruction method uses an
object-centered representation, specifically, a
triangulated 3-D mesh of vertices. Such a rep-
resentation accommodates the two classes of
information mentioned above, as well as mul-
tiple images (including motion sequences of
a rigid object) and self-occlusions. We have
chosen to model the surface material using
the Lambertian reflectance model with variable
albedo, though generalizations to specular sur-
faces would be relatively straightforward. Con-
sequently, the natural choice for the monocular
information source is shading, while intensity is
the natural choice for the image feature used
in multi-image correspondence. Not only are
these the natural choices given a Lambertian
reflectance model, they are also complementary
[7, 30): intensity correlation is most accurate
wherever the input images are highly textured,
whereas shading is most accurate when the in-
put images are untextured.
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The reconstruction method is to minimize
an objective function whose components de-
pend on the input images and some measure of
the complexity of the 3-D mesh. The method
starts with an initial estimate for the mesh
derived from the triangulation of conventional
stereo results, and uses a standard optimization
technique called conjugate gradient descent to
minimize the objective function. The image-
dependent components of the objective func-
tion are related to the two sources of informa-
tion mentioned above. We take advantage of
the complementary nature of the information
sources by weighting the components at each
facet of the triangulated mesh according to the
amount of texturing within the area of the im-
ages that the facet projects to. The projection
uses a hidden-surface algorithm to take occlu-
sions into account.

In the following section, we describe related
work and our contributions in this area. Fol-
lowing this we discuss some of the key issues
in multi-image surface reconstruction and how
to combine different sources of information for
such purposes. We then describe in detail our
specific procedure, discuss the behavior of our
procedure on synthetic data, and show some re-
sults on real images.

2 Related Work and Contri-
butions

Three-dimensional reconstruction of visible sur-
faces continues to be an important goal
of the computer vision research community.
Initially, much of the work concentrated
on 2%-dimensional image-centered reconstruc-
tions, such as Barrow and Tenenbaum’s Intrin-
sic Images [6] and Marr’s 23-D Sketch [35].
These preliminary ideas have been the basis for
quite successful systems for recovering shape
and surface properties. Some have used sin-
gle sources of information, such as sequences of
range data or intensity images [3, 25}, stereo
[12, 26, 52, 53], and shading [21, 24, 44]. Oth-
ers have combined sources of information, such
as shading and texture [8], features and stereo
(23], focus, vergence, stereo, and camera cali-
bration [1). See [2] for further discussions on

information fusion.

More recently, full 3-dimensional models have
been used, such as 3-D surface meshes (46, 49],
parameterized surfaces [40, 33], particle systems
[42, 17], and volumetric models {36, 45, 37].

As with the 21-dimensional representations,
3-D representations have used a variety of sin-
gle image cues for reconstruction, such as sil-
houettes and image features [9, 11, 47, 48, 50],
range data [51], stereo [17], and motion [41)].
Liedtke[32] first uses silhouettes to derive an
initial estimate of the surface, and then uses
a multi-image stereo algorithm to improve on
the result. Their approach to deriving an ini-
tial estimate for the mesh, as with Szeliski and
Tonneson’s approach [42], is significantly more
powerful than the one we use in this paper. This
is an important topic for future research.

Of special relevance to this paper is research
in combining stereo and shape from shading.
Using 21-dimensional representations, Blake et
al. [7] is the earliest reference we are aware
of that discusses the complementary nature of
stereo and shape from shading, but their exper-
imental results are almost non-existent in this
paper. Leclerc and Bobick [31) discuss the in-
tegration of stereo and shape from shading, but
only use stereo as an initial condition to a dis-
crete height from shading algorithm. Cryer et
al. [10]) combine the high-frequency information
from a shape from shading algorithm with the
low-frequency information from a stereo algo-
rithm using filters designed to match those in
the human visual system.

Using full 3-D representations, Heipke [22]
integrates the two cues, but assumes that the
images can be separated beforehand into zones
of variable albedo (where one does stereo) and
areas of constant albedo (where one does shape
from shading). This is in contrast to our ap-
proach, in which the optimization procedure dy-
namically adapts to the image data.

In this paper, we unify the idea of using 3-D
meshes to integrate information from multiple
images with that of using multiple cues. Our
specific approach to this unification, has led to
a number of important contributions:

o We correctly deal with occlusions by using
a hidden surface algorithm during the re-




construction process.

e Our technique for doing stereo avoids the
constant depth assumption of traditional
correlation-based stereo algorithms, effec-
tively using variable-sized windows in the
images.

e Our approach to shape from shading is
applicable to surfaces with slowly varying
albedo. This is a significant advance o er
traditional approaches that require con-
stant albedo.

e We propose a dynamic weighting scheme
for combining shape from shading and
stereo, and demonstrate that it leads to sig-
nificantly better results than using either
cue alone using both synthetic and real im-

ages.

To demonstrate the validity of the overall ap-
proach, we have implemented a computation-
ally effective optimization procedure, and have
demonstrated that it finds good minima of the
objective function on both synthetic and real
images.

3 Issues in Multi-Image Sur-
face Reconstruction

In this section, we briefly discuss some of the key
issues in multi-image surface reconstructions,
and outline how we address the issues in this
paper. These outlines will be expanded upon in
Section 4.

3.1 Surface Shape and its Represen-
tation

Since the task is to reconstruct a surface from
multiple images whose vantage points may be
very different, we need a surface representation
that can be used to generate images of the sur-
face from arbitrary viewpoints, taking into ac-
count self-occlusion, self-shadowing, and other
viewpoint-dependent effects. Clearly, a single
image-centered representation, such as a depth
map, is inadequate for this purpose. Instead,
an object-centered surface representation is re-
quired.

There are many object-centered surface rep-
resentations that are possible. However, there
are some practical issues that are important in
choosing an appropriate one. First, the repre-
sentation should be general-purpose in the sense
that it should be possible to represent any con-
tinuous surface, closed or open, and of arbitrary
genus. Second, it should be relatively straight-
forward to generate an instance of a surface
from standard data sets such as depth maps or
clouds of points. Finally, there should be a com-
putationally simple correspondence between the
parameters specifying the surface and the actual
3-D shape of the surface, so that images of the
surface can be easily generated, thereby allow-
ing the integration of information from multiple
images.

A hexagonally connected mesh of 3-D ver-
tices, as in Figure 2, is an example of a surface
representation that meets the criteria stated
above, and is the one we have chosen for this pa-
per. Such a mesh defines a surface composed of
three-sided planar polygons that we call trian-
gular facets, or simply facets. Triangular facets
are particularly easy to manipulate for image
and shadow generation, since they are the ba-
sis for many 3-D graphics systems. Hexagonal
meshes can be used to construct virtually arbi-
trary surfaces. Finally, standard triangulation
algorithms can be used to generate such a sur-
face representation from real noisy data [18, 42].

3.2 Material Properties and their
Representation

Objects in the world are composed of many
types of material, and the material type can
vary across the object’s surface in many ways.
The key issues, therefore, are the type of mate-
rial we wish to consider, and how its variation
across the surface is to be represented. In gen-
eral, one can represent a material type by its re-
flectance function, which maps the wavelength
distribution and orientation of a light source,
the normal to the surface, and the viewisg di-
rection into an image color. This function is
generally quite complex. However, there are re-
flectance functions that are not only much sim-
pler, but are also quite common. Such functions
are modeled using only one, or, at most, a few,




parameters. Consequently, one can accurately
model the material properties of a surface by
representing these parameters at every point on
the surface.

Probably the simplest, and most common, -

such function is the Lambertian reflectance
function. For grey-level images, this function
not only has a single parameter, albedo, which
is the ratio of incoming to outgoing light in-
tensity, but the image intensity is independent
of viewpoint. For this reason, we have chosen
to restrict ourselves to Lambertian surfaces in
this paper. However, because we use a full 3-
D representation, a generalization to specular
surfaces would be fairly straightforward.

Having chosen a specific reflectance function,
the remaining issue is how to represent the
spatially-varying parameter(s). In general, one
needs to be able to represent independent pa-
rameter values at every point of the surface. In
terms of the mesh representation of the surface,
this implies some type of spatial sampling of
each facet. Given the finite resolution of the
images, and other practical considerations, we
have chosen to use two types of spatial sam-
pling. The first is most appropriate when the
parameters vary quickly across the surface, and
the second when they vary more slowly. For
the former case, we use a uniform sampling of
each facet, where the inter-sample spacing cor-
responds roughly to no more than one or two
pixels in any of the images. For the later case,
we use a single value associated with each facet.

As we shall see later, the two different repre-
sentations are used somewhat differently, and
the choice of which representation to use is
made on a facet-by-facet basis as a function of
the images.

3.3 Information Sources for Recon-
struction

There are a number of information sources that
are available for the reconstruction of a surface
and its material properties. Here, we consider
two classes of information.

The first class are those information sources
that require a single image, such as texture gra-
dients, shading, and occlusion edges. When us.
ing multiple images and a full 3-D surface rep-

resentation, however, we can do certain things
that cannot be done with a single image. First,
the information source can be checked for con-
sistency across all images, taking into account
occlusions. Second, the information can be “av-
eraged” over all the images, when the source
is consistent and occlusions are taken into ac-
count, to increase its sensitivity.

The second class are those information
sources that require at least two images, such
as the triangulation of corresponding points be-
tween input images (given camera models and
their relative positions). Generally speaking,
this source is most useful when corresponding
points can be easily identified, and their image
positions accurately measured. The ease and
accuracy of this correspondence can vary sig-
nificantly from place to place in the image set,
and depends critically on the type of feature
used. Consequently, whatever the type of fea-
ture used, one must be able to identify where in
the images that feature provides reliable corre-
spondences, and what accuracy one can expect.

The image feature that we have chosen for
correspondence (though it is by no means the
only one possible) is simply intensity, because
the Lambertian reflectance model described ear-
lier implies that the image intensity of a surface
poiut is independent of the viewing direction.
Therefore, corresponding points should have the
same intensity in all images. Clearly, intensity
can only be a reliable feature when the albedo
varies quickly enough on the surface (and, con-
sequently, the images are highly textured), and
the search space is sufficiently narrow. Other-
wise, there would be significant ambiguity in the
correspondence of pixels across the images.

In contrast to our approach traditional
correlation-based stereo methods use fixed-size
windows in images, which can only yield correct
results when the surface is tangential to the im-
age plane. Instead, we compare the intensities
as projected onto the facets of the surface, which
is equivalent to having variablc-shaped windows
in the images. Consequently, if the original sur-
face is well modeled by a mesh surface, the re-
construction can be significantly more accurate.
The Hierarchical Warp Stereo System [39] is an-
other example of a method that takes into ac-
count the variable shapes of windows required




for accurate reconstruction of a surface, though
it uses only an image-centered representation of
the surface.

As for the monocular information source, we

have chosen to use shading. There are a number
of reasons for this. First, we are using a Lam-
bertian reflectance model, making shading a rel-
atively simple source of information. Second,
shading is most reliable when the albedo varies
slowly across the surface, which is the natural
complement to intensity correspondence, which
requires quickly varying albedo. The comple-
mentary nature of these two sources should al-
low us to accurately recover the surface geom-
etry and material properties for a wide variety
of images.

In contrast to our approach traditional uses
of shading information assume that the albedo
is constant across the entire surface, which is a
major limitation when applied to real images.
We overcome this limitation by improving upon
a method to deal with discontinuities in albedo
alluded to in the summary of [30, 31]. We com-
pute the albedo at each facet using the nor-
mal to the facet, a light-source direction, and
the average of the intensities projected onto the
facet from all images. Since we use the aver-
age of the projected intensities, this computed
albedo minimizes the mean squared error be-
tween the images of the mesh surface and the
input images. The variation of this computed
albedo across the surface is the actual informa-
tion source used to recover the surface. For ex-
ample, if the albedo of the real surface were
indeed constant, as in traditional shape-from-
shading problems, then the measured variation
in albedo will be zero for the correct mesh sur-
face, and we will have recovered both surface
shape and albedo. The distinct advantage of
this approach over the traditional one is that it
can deal with surfaces whose albedo is not con-
stant, but instead varies slowly over the surface.

In the following subsection, we describe how
these two sources of information are combined
and used to reconstruct surfaces.

3.4 Combining and Using Informa-
tion Sources

Simply put, our approach to surface reconstruc-
tion is to adjust the parameters of the surface
(in the case of the mesh, this means the coor-
dinates of the vertices), until the images of the
surface are most consistent with the informa-
tion sources described above. This approach re-
quires a number of things. First, one must have
an initial estimate of the surface. In this pa-
per, this is derived from a standard correlation-
based stereo algorithm. Second, one must know
the light source direction, camera models, and
their relative positions so that images of the sur-
face can be generated (we assume these are pro-
vided a priori). Third, one must have a way
of quantifying what is meant by “most consis-
tent with the information sources.” Here, we
use an objective function that is a linear com-
bination of components, one for each informa-
tion source, whose weights are determined on a
facet-by-facet basis as a function of the images.
Finally, one must have a computationally effec-
tive means of finding a surface, given the initial
estimate, that is reasonably close to the best of
all possible surfaces according to the objective
function.

Our combined objective function has three
components, two of which were mentioned
above: an intensity correlation component, and
an albedo variation component. A third com-
ponent is 2 measure of the smoothness of the
surface. The first two components are weighted
differently at each facet as a function of the im-
age intensities projected onto the facet, while
the surface smoothness component has the same
weight everywhere, but is typically decreased as
the iterations proceed.

Since the intensity correlation component de-
pends on the difference in intensity at a given
point, it is most accurate when the images
are highly textured in the areas that the facet
projects to. To see this, consider the case when
the images have constant intensity in the neigh-
borhood of the projected facet: the difference
in intensity will be a constant, independent of
small variations in the facet’s position or ori-
entation. On the other hand, when the images
are highly textured, small changes in the facet
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can significantly change the value of this com-
ponent. Thus, we weight the intensity correla-
tion component most strongly for those facets in
which the projected image intensities are highly
textured.

Conversely, the albedo variation component
is most accurate when the intensities within a
facet vary slowly. This is because we are assum-
ing that the albedo varies slowly enough across
the surface that a constant-albedo facet is a
good model for the surface. Since the facets are
planar, this should produce images whose inten-
sities are constant within the projected facet.
Thus, we weight the albedo variation compo-
nent most strongly when the projected intensi-
ties within a facet vary slowly.

Since rapidly changing albedoes produce
highly textured image regions, our weighting
scheme, in effect, turns off the shading com-
ponent and turns on the stereo component in
such regions. Thus, it provides the shape from
shading component with implicit boundary con-
ditions at the edge of regions of constant albedo.

The surface smoothness component is re-
quired as a stabilizing term because neither of
the above components is likely to be exactly cor-
rect, the surfaces are not exactly Lambertian,
the camera positions are not exactly correct,
there is noise in the images, and so on. Cur-
rently, we use the heuristic technique of starting
with a relatively large weight for the smoothness
component, and decrease it as the iterations
proceed. The theoretically optimal point at
which the smoothness weight should no longer
be decreased is still an open question, although
a single, empirically determined, value has been
used with great success across all of the images
presented in this paper when using all of the
components.

In the following section, we describe the sur-
face representation and optimization algorithm
in more detail.

4 Details of Surface Model
and Optimization Proce-
dure

As discussed in the previous section, our ap-
proach to recovering surface shape and re-

flectance properties from multiple images is to
deform a three-dimensional representation of
the surface so as to minimize an objective func-
tion. The free variables of this objective func-
tion are the coordinates of the vertices of the
mesh representing the surface, and the process
is started with an initial estimate of the surface.
For the experiments described in this paper, we
have derived this initial estimate by triangu-
lating the smooth depth-map generated by the
correlation-based stereo algorithm described in
(19, 15). Figure 1 illustrates the output of this
algorithm on a synthetic stereo pair.

Alternatively, we could have relied on more
sophisticated algorithms that can triangulate
noisy laser or stereo range-data to derive our
initial estimates [14, 18, 42]. All these meth-
ods tend to smooth the data and to interpolate
blindly in the absence of data so that their out-
put needs to be refined by algorithms such as
ours.

In this section, we describe more formally
each part of our approach.

4.1 Images and Camera Models

In this paper, we assume that images are
monochrome, and that their camera models are
known a priori. The set of grey-level images is
denoted G = (¢1,92,...,9n,)- A point in an
image is denoted u = (u,v), and the intensity
of point u in image g; is denoted g;(u). For non-
integer values of u we use bilinear interpolation
over the four points represented by the floor and
ceiling of the coordinates of u.

The projection of an arbitrary point x =
(z,, ) in space into image g; is denoted m;(x).
There are well-known methods for correcting
both geometric and radiometric errors in im-
ages, as surveyed in [4], pp. 68-77. Thus, we
assume that all effects of lens distortion and the
like have been taken care of in producing the in-
put images, so that the projection of a surface
into an image is well modeled by a perspective
projection. Thus, u = my(x) can be written as:
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Figure 1: (a,b) A synthetic stereo pair generated by texture-mapping a real image of the Martin-Marietta
ALV test-site onto a Digital Elevation Model (DEM). (¢) The disparity map using a correlation-based
algorithm. The black areas indicate that the stereo algorithm could not find a match. Elsewhere, lighter
greys indicate higher elevations. (d) The same disparity map after smoothing and interpolation.

ujw
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where M; is a three by four projection matrix.

4.2 Surface Representation

We represent a surface S by a hexagonally-
connected set of vertices V = (v;,v3,...,v,,)
called a mesh. The position of vertex v; is spec-
ified by its Cartesian coordinates (z;,y;,z;).
Figure 2 shows such a mesh as a wire frame
and as a shaded solid surface.

Each vertex in the interior of the surface has
exactly six neighbors. The neighbors of vertex
v; are consistently ordered in a clock-wise fash-
ion. Vertices on the edge of a surface may have
anywhere from two to five neighbors.

Neighboring vertices are further organized
into triangular planar surface elements called
facets, denoted F = (fy, f2,...,fa,). The ver-
tices of a facet are also ordered in a clock-wise
fashion. In this work, we require that the initial
estimate ‘of the surface have facets whose sides
are of equal length. The objective function de-
scribed below tends to maintain this equality,
but does not strictly enforce it. The representa-
tion can be extended in a straight-forward fash-
ion to support different surface resolutions by
sub-dividing facets (which we have done). How-
ever, facets of a given resolution will still be re-
quired to have approximately equal sides.

4.3 Objective Function

The objective function £(S) that we use to re-
cover the surface is best described in two equa-
tions. In the first equation,

£(S) = Ap€p(S) + E6(S), (1)

£(S) is decomposed into a linear combination of
two components. The first component, £p(S),
is a measure of the deformation of the surface
from a nominal shape, and is independent of the
images. For this paper, the nominal shape is a
plane. Higher-order measures, such as deforma-
tion from a sphere, are also possible. This nom-
inal shape represents the shape that the surface
would take in the absence of any information
from the images.

The second component,

Ec(S) = Ac&c(S) + As€s(S) (2)

depends on the images, and is the one that
drives the reconstruction process. It is further
decomposed into a linear combination of the two
information sources described in the previous
section: a multi-image correlation component,
&c(S), and a component that depends on the
shading of the surface, £5(S).

These components, and their relative weights,
are described in .more detail below.




Figure 2: The top row shows a hexagonal mesh as both a wireframe and a shaded surface. The bottom row
shows several images of a scene. In our approach, these images are projected onto the mesh using camers

models.

4.3.1 Surface Deformation Component

As stated earlier, the surface deformation (or
smoothness) component is a measure of the de-
viation of the mesh surface from some nominal
smooth shape. When the nominal shape is a
plane, we can approximate this as follows.
Consider a perfectly planar hexagonal mesh
for which the distances between neighboring
vertices are exactly equal. Recall that the mesh
is defined so that the neighbors of a vertex v; are
ordered in a clock-wise fashion, and are denoted
vn;(j)- If the hexagonal mesh was perfectly pla-
nar, then the third neighbor over from the j**
neighbor, vy,(;4+3), would lie on a straight line
with v; and vp,(j). Given that the inter-vertex
distances are equal, this implies that coordi-
nates of v; equal the average of the coordinates

of vy,(;) and vp,(j43), for any j.

Given the above, we can write a measure of
the deviation of the mesh from a plane as fol-
lows:

(2z; — x4 — zpr)*+

ny 3
(s) = Y Y (25 — ne — W)+ .
=1 i (22— 2 — 2)?
k=N;(5)
k'=N;(i+3)

Note that this term is also equivalent to
the squared directional curvature of the sur-
face when the sides have approximately equal
lengths [27). Also, this term can accommo-
date multiple resolutions of facets by normaliz-
ing each term by the nominal inter-vertex spac-




ing of the facets.

4.3.2 Multi-Image Intensity Correlation

The multi-image intensity correlation compo-

nent is the sum of squared differences in inten-
sity from all the images at a given sample-point
on a facet, summed over all sample-points, and
summed over all facets. This component is pre-
sented in stages in the remainder of this subsec-
tion.

First, we define the sample-points of a facet
by taking advantage of the fact that all points
on a triangular facet are a convex combination
of its vertices. Thus, we can write the sample-
points x; of facet fi as:

Xig = MaXe1+ ANaXe2+ Maxes, 1 =3,4,...

where X} 1, Xi 3, and X; 3 are the coordinates of
the vertices of facet fi, and Aj3+ A2+ A3 = 1.
In the top half of Figure 3(a), we see an example
of the sample points of a facet.

Next, we develop the sum of squared differ-
ences in intensity from all images for a given
point x. Recall that a point x in space is pro-
Jjected into a point u in image g; via the perspec-
tive transformation u = m(x). Consequently,
the sum of squared differences in intensity from
all the images, o'(x), is:

W) = LY a(mix)

t i=1

ad(x) =

ng
L $° (gu(mix) - ' (x))?

ni =1

Figure 3(a) illustrates the projection of a
sample-point of a facet onto several images.

The above definition of o/(x) does not take

into account occlusions of the surface. To do
80, we use a “Facet-ID” image shown in Fig-
ure 4. It is generated by encoding the index
i of each facet f; as a unique color, and pro-
jecting the surface into the image plane using a
standard hidden-surface algorithm. Thus, when
a sample-point from facet fi is projected into
an image, the index k is compared to the in-
dex stored in the Facet-ID image at that point.
If they are the same, then the sample-point is

visible in that image, otherwise, it is not. Let
vi(x) = 1 when point x is determined to be
visible in image g; by the method above, and
vi(x) = 0 otherwise. Then, the correct form for
the sum of squared differences in iatensity at a
point X is:

_ Liag vi(x)gi(mi(x))
Hx) = SR @)

T lx) (smix)) = u(x)?
o(x) s vilx)

Finally, summing o(x) over all sample-points
and over all facets yields the multi-image inten-
sity correlation component:

£o(S) = e 3 olxui,

k=1 =3

where ¢, is a number between 0 and 1 that
weights the contribution from each facet differ-
ently, depending on the average degree of tex-
turing within a facet (see Section 4.3.4).

When the original surface giving rise to the
images is sufficiently textured, this component
should be smallest when the surface S closely
approximates the original surface. However,
when the surface has constant, or nearly con-
stant, albedo this component would be small
for many different surfaces. As an extreme ex-
ample of this ambiguity, consider a planar sur-
face with constant albedo. This produces im-
ages with constant intensity. Thus, this compo-
nent will not be able to constrain the shape of
the surface, since the difference in intensity will
be zero for all surfaces.

An example of using only the intensity-
correlation and smoothness components on the
synthetic stereo pair of Figure 1 is shown in Fig-
ure 5. The top row of the figure depicts the
initial surface estimate. Figures 5(a) and (b)
are shaded images of the mesh. Figure 5(c) de-
picts the error from ground-truth elevation for
the left image, where black indicates zero error,
and white indicates an error corresponding to a
few pixels in disparity. Figure 5(d) depicts the
squared difference in intensity between the left
image and the right images warped using the
disparity map. Note that the worst errors occur
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(a) (b)

Figure 3: (a) Facets are sampled at regular intervals as illustrated here. We use the grey levels of the
projections of these sample points to compute the stereo score. (b) The albedo of each facet is estimated
uﬁn;thefaeetnotmdw,thelightmmdirectionTandthe:mugemyleveloﬁheprojectionofthe
facet into the images.

(a) (b) (c)

Figure 4: Tlustration of the projection of a mesh, and the “Facet-ID” image used to accomodate occlusions
during surface reconstruction. (a) A shaded image of a mesh. (b) A wire-frame representation of the mesh
(bold white lines) and the sample-points in each facet (interior white points). (c) The “Facet-ID” image,
wherein the color at a pixel is chosen to uniquely identify the visible facet at that point (shown here as a
grey-level image).

along the steep ridge of the terrain, where the 4.3.3 Shading
constant-depth assumption of correlation-based

stereo is most strongly violated. The shading component of the objective func-

tion is the sum, over all facets, of the difference
between the computed albedo of the facet and
the computed albedoes of all of its neighbors.

The bottom row of Figure 5 illustrates the re-
sult of the optimization procedure, described in
Section 4.4, using only the intensity-correlation
and smoothness components. Note that the
overall error in both elevation and intensity is
lower, and that the error is no longer concen-
trated along the ridge. As a result, the ridge is
clearly sharper in the shaded views.

The motivation for this component, and its pre-
cise form, follow.

Recall that the Lambertian reflectance model
defines the intensity g at a point on a surface

with a unit surface normal W as:

g=a(a+bN-1T), 3)
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Figure 5: (a,b) Two shaded views of the mesh derived from the smoothed disparity map of Figure 1(d). (c)
Deviations in altitude from the elevation data used to generate the synthetic pair. (d) Intensity error image,
created by warping the right image into the left image using the disparities corresponding to the elevations
of the mesh facets and computing the squared difference between these two images (e,f,g,h) Corresponding
images after stereo optimization. Note that the ridge now appears much sharper in the shaded views, and
that the overall error is smaller and more evenly distributed.

where a is the albedo of the surface, a is the
magnitude of the ambient light, b is the mag-

nitude of a point light source, and T is the
direction of the point light source as depicted
in Figure 3(b).

Note that g is independent of the viewing di-
rection. Consequently, if we were to image a
planar Lambertian facet from several points of
view, its intensity would be the same for all pix-
els in the projection of the facet. Conversely, if
we were to measure the average intensity g of
all of the pixels within the projection of a facet
fx, we could compute its albedo, ax, as follows:

o= —£ (4)

(a+bN - L)
This assumes, of course, that the facet is well-
modeled by a single albedo, and that the vari-
ation in intensity is due only to noise. In this
paper, we assume that the ambient and direct

illumination (i.e., a, b, and _f) are given, al-

though some of these parameters could be in-
cluded in the optimization, as was done in [31).

The average intensity g; of a facet is com-
puted by scanning over all the Facet-ID images
for index k, and taking the average of the inten-
sities at matching points in the corresponding
images. This method provides an inexpensive
way of computing the average intensity while
taking occlusions into account.

Now, if the original surface had exactly con-
stant albedo, and if our mesh surface were
a good approximation to the original surface,
then the computed albedoes should be approx-
imately the same across all facets. Thus, some
measure of the variation in computed albedoes
would be a good measure of the correctness of
the mesh surface. If the albedo varies slowly
across the surface, we propose that an appro-
priate measure of this variation is the difference
between the computed albedo at the facet and
the computed albedoes of all of its neighbors:
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where Ny(k) is the set of indices of the facets
that are neighbors of facet fi, and c; and ¢; are
numbers between 0 and 1 that depend on the
degree of texturing within facets f; and f;.

An example of using only the shading and
smoothness components is illustrated in Fig-
ure 6. Figure 6(a) shows a shaded view of
the original surface, a hemisphere with constant
albedo. Figures 6(b) and (c) show shaded views
of the initial surface estimate, which was de-
rived by adding white noise to the vertex co-
ordinates of the original surface. Figures 6(d)
and (e) are the shaded views of the result af-
ter optimization, and Figure 6(f) is the albedo
map for the surface, i.e. the intensity in the im-
age represents the albedo of the surface. Note
that the albedo and shape are well recovered ex-
cept near the edge of the hemisphere where the
image intensity varies rapidly across the image.
This is because the approximation we use in the
derivatives of this component is that the mean
intensity within a facet does not vary signifi-
cantly in the neighborhood of a facet, which is
violated for facets that straddle the boundary.
This does not hurt us when combining shading
with the stereo component since, as explain in
the following subsection, we turn off the shading
component in such areas.

4.3.4 Combining the Components

Recall that the objective function £(S) is a lin-
ear combination of three cormponents:

E(S) = ApED(S)+ Ac€c(S) + AsEs(S),

where the last two components are themselves
linear combinations of subcomponents com-
puted on a per-facet basis:

&c(S) = Z! Ck nZd(Xk.:) (5)
k=1 =3
ot 4

Es(S) = Z(l - ck) Z (1-¢j)(ax - a,~)2.
k=1 JEN, (k)

Thus, one needs to specify both the As, defining
the relative weights of the components, and the
ci8, defining the relative weights of the facets in
each of these components.

The A weights are defined as follows:

dp = —2n

I Vep(so) |l

A = =L (6)
I Vsc;(@) I

As = ——
I Ves(so) |

where S° is the initial estimate of the surface,
and the A’s are user defined weights. Normal-
izing each component by the magnitude of its
initial gradient allows the components to have
roughly the same influence when the M\'s are
equal. Thus, the user can more easily specify
the relative contributions of each component in
an image-independent fashion. This normaliza-
tion scheme was used with great success in (16},
and is analogous to standard constrained op-
timization techniques in which the various con-
straints are scaled so that their eigenvalues have
comparable magnitudes [34].

As mentioned earlier, the c; weights are a
function of the degree of texturing in the in-
tensities projected within a facet fi. A sim-
ple measure of the degree of texturing within a
facet is the variance in intensity of all the pixels
projecting onto the facet, denoted o(S) (us-
ing the Facet-ID image to accommodate occlu-
sions). We have found that using the logarithm
of 0x(S) yields the most stable results:

¢k = alog(1l + ox(S)) + b, (N

where a and b are normalizing factors chosen so
that the smallest ¢ is zero, and the largest is
one.

4.4 The Optimization Procedure

The purpose of the optimization procedure is to
iteratively modify the surface S so as to mini-
mize £(S), given some initial estimate S, and
some value for the weights \s, A, and Ap




Figure 6: (a) Shaded image of a hemisphere of contant albedo. (b,c) Shaded views of randomised hemisphere
used as a starting point. (d,e) Shaded views of the same hemisphere after optimisation using only the shading
component of the objective function. (f) The recovered albedo map.

(where X5 + Ay + Ap = 1) defined in Equa-
tion 7. Ideally, one would like to use as small a
value of the deformation weight A}, as possible
80 as to minimize the bias introduced by this
term. However, in practice, A}, serves a dual
purpose. First, since the surface deformation
term is a quadratic function of the vertex co-
ordinates, it “convexifies” the energy landscape
and improves the convergence properties of the
optimization procedure. Second, as will be dis-
cussed in the results section, in the absence of
a smoothing term, the objective function may
overfit the data and wrinkle the surface exces-
gsively. Furthermore, the c; weights of Equations
6 and 7 are computed for the initial position of
the mesh and are only meaningful when it is
relatively close to the actual surface.

Consequently, we use an optimization method
that is inspired by the heuristic technique
known as a continuation method [43, 28, 29, 30).
We first “turn off” the shading term by setting
A5 (equation 7) to 0 and set A to a value that
is large enough to sufficiently convexify the en-
ergy landscape but small enough to allow cur-

vature in the surface. In this paper we take the
initial value of A}, to be 0.5. Given the initial
estimate S, a local minimum of this approxi-
mate objective function is found using a stan-
dard optimization procedure. Then, A}, is de-
creased slightly, and the optimization procedure
is applied again, starting at the local minimum
found for the previous approximation. This cy-
cle is repeated until A}, is decreased to the de-
sired value. Finally we “turn on” the shading
term, compute the c; weights and reoptimize.
In all examples shown in the result section we
use Ao = Ag = .4and \p = .2.

The stereo component effectively uses only
first order information about the surface (i.e.,
the position of the vertices), whereas shading
uses second order information about the sur-
face (i.e., its surface normals). Thus, by op-
timizing the stereo component first, we effec-
tively compute the zero order properties of the
surface and set up boundary conditions that the
shading component can then use to compute the
first order properties of the surface in texture-
less regions. In section 5, we will show that this




leads to a significant improvement over using
the stereo component alone.

When dealing with surfaces for which motion
in one direction leads to more dramatic changes

that motions in others, as is typically the case

with the z direction in Digital Elevation Mod-
els (DEMs), we have found that the following
heuristic to be useful. We first fix the z and y
coordinates of vertices and adjust z alone. Once
the surface has been optimized, we the allow all
of the coordinates to vary simultaneously.

The optimization procedure we use at ev-
ery stage is a standard conjugate-gradient de-
scent procedure called FRPRMN (from [38]) in
conjunction with the a simple line search al-
gorithm. The conjugate-gradient procedure re-
quires three inputs: 1) a function that returns
the value of the objective function for any S; 2)
a function that returns the gradieat of £(S),
i.e., a vector whose elements are the partial
derivatives of £(S) with respect to the vertex
coordinates, evaluated at §; and 3) an initial
estimate S°.

The gradient of £(S) is conceptually straight-
forward, but is fairly complicated to derive man-
ually. We have used the Maple ! mathematical
package to derive some of the terms. We sum-
marize the calculation of the derivatives below
in general terms.

The derivatives of the stereo term are lin-
ear combinations of image intensity derivatives
and of derivatives of the 3-D projections of
points onto the images. Since we use bilinear-
interpolation of image values, the first deriva-
tives of image intensity are linear combinations
of the image intensities in the immediate neigh-
borhood of the projection. Since sample-points
are linear combinations in projective space of
the mesh vertices, their projections are ratios
of linear combinations of the projections of
the vertices, which themselves depend linearly
on the vertex coordinates. Consequently, the
derivatives of these projections are ratios of lin-
ear combinations of the vertex coordinates and
squares of linear combinations of the vertex co-
ordinates.

Similarly, the derivatives of the shading term
depend of the derivatives of the surface nor-

!Trademark, Waterloo Maple Software

mal, which can be easily derived analytically,
and from the derivative of the mean grey-level
in the facets. In this work, the shading term is
used mainly in the fairly uniform areas where
the latter derivative is assumed to be small and
therefore neglected.

5 Behavior of the Objective
Function and Results

In previous sections, we have shown results of
the optimization procedure using only one or
the other of the image components of the objec-
tive function. In this section, we first illustrate
the behavior of the complete objective function
using synthetic data. We then show that the
same behavior can be observed with real data,
allowing us to generate accurate 3-D reconstruc-
tions of real surfaces from multiple images.

5.1 Synthetic Data

To demonstrate the properties of the objective
function of Equation 1 and the influence of the
coefficients defined in Equation 4, we use as in-
put the five synthetic images of a shaded hemi-
sphere with variable albedo shown at the bot-
tom of Figure 7, both with and without the ad-
dition of white noise. Each column of the figure
illustrates the steps used in the creation of the
image at the bottom of the column. We be-
gin with a mesh and an albedo map, shown in
the top row. Then, for each view, two images
are produced. The first image (second row of
the figure) is the albedo map texture-mapped
onto the mesh from the final image’s point of
view. The second image (third row of the fig-
ure) is a shaded view of the mesh, using a con-
stant albedo equal to one. The final image is the
point-by-point product of these two images be-
cause, by Equation 3, the imaged intensity of a
Lambertian surface is the product of the albedo
(first image) and the inner product of the light
source and the surface normal (second image).
Figure 8 depicts graphically the result of our
experiments. In each experiment we random-
ized the mesh by adding random numbers to
the coordinates of the mesh vertices, and added
different amounts of noise to the input images.
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Figure 7: The making of synthetic images of a shaded hemisphere with variable albedo that conforms to

our Lambertian model.

We then used our optimization procedure to es-
timate the true hemispherical shape and true
albedo map. More precisely, starting from our
randomized initial estimate, we first use stereo
alone and progressively decrease the value of
the A, parameter of Equation 7 from 0.5 to
0. We then turn on the shading term by set-
ting both A and A§ to 0.4, compute the cxs
of Equation 7 and optimize the full objective
function. To show the stability of the process,
we then recompute the c¢;s for the optimized
mesh and perform a second optimization using
the updated values.

The first column of Figure 8 is for experi-
ments using only the first, second, and third im-
ages from Figure 7, where there is little self oc-
clusion. The second column is for experiments
using the first, fourth, and fifth images, where

there is a significant amount of self occlusion.
Finally, the third column is for experiments us-
ing all five images. In this particular set of ex-
periments, we fixed the boundaries of the mesh
and allowed only the z coordinates of the ver-
tices to vary. However, the same overall be-
haviors can be observed without the boundary
conditions.

The first row from the top of Figure 8 is
a graph of the average squared error in eleva-
tion (the abscissa) versus decreasing A (the
ordinate). To the left of the dotted vertical
line, only the intensity correlation component is
used. To the right, both the intensity correla-
tion and shading components are used. The dif-
ferent curves are for different amounts of noise
in the input images. The bottom curve is when
there is no noise (other than quantization error),
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Figure 8: Graphs of the errors and objective function components while fitting a surface model to the
synthetic shaded hemisphere images of Figure 7 (These graphs are explained in detail in the text.). (a,b,c)
Average error in recovered elevation. (d,e,f) Average error in recovered albedo. (g,h,i) Stereo component of
the energy. (j,k,1) Shading component of the energy.

the middle curve is for a noise variance of 4%
of the image dynamic range, and the top curve
is for a noise variance of 8%. The short verti-
cal lines along the curves indicated the standard
deviation of the average error over the 20 exper-
iments performed to derive each curve.

The second row of Figure 8 is a graph of the
average error in computed albedo. The third
row is the average value of the intensity corre-
lation component, £c(S), and the fourth row
is the average value of the shading component,

£s(S).

Note that, as A}, decreases and stereo alone
is used (i.e., as the ordinate is traversed right-
wards to the dotted vertical line), the average
elevation error decreases when there is no noise
in the input image (bottom curve), as does
the average albedo error and the two compo-
nents of the objective function. However, when
the images are noisy, the elevation error (first
row) stops decreasing and may ever begin to
increase as we start fitting to the grey-level




noise, even though the value of the intensity
correlation component (third row) continues to
decrease (as it must). Furthermore, both the
albedo error (second row) and the shading com-
ponent (fourth row) also begin to increase when
the elevation error does. This is natural since
for smaller values of A the surface becomes
rougher and its normals less well-behaved. As
a result, the estimated albedoes of Equation 4
become less reliable and noisier.

In other words, an increase in the shading
component provides us with a warning that we
are starting to overfit the data. This is a valu-
able behavior in itself. Furthermore, by turning
on the shading component of cur objective func-
tion (those parts of the graphs that are to the
right of the vertical dotted line), we can bring
down both the error in albedo and the value
of albedo component with at worst of modest
increase in the value of the stereo component,
resulting in an overall reduction of the elevation
error. Even when there is nothing but quanti-
zation noise in the image, the addition of the
shading component can make a small, but still
noticeable difference. The reasons for this are
twofold:

1. The shading component averages over
whole facets and is therefore less sensitive
to uncorrelated noise.

2. The shading component uses absolute in-
tensity values whereas the stereo compo-
nent uses intensity differences. Thus, in the
presence of noise in textureless areas, the
signal-to-noise ratio for the absolute values
(used by the shading component) is larger
than for the differences (used by the stereo
component), thereby making the shading
term more robust.

However, in our experience, the shading term
can only be used reliably when the surface is rel-
atively close to the correct answer. This is not
surprising since the stereo deals directly with el-
evations whereas shading deals with derivatives
of elevation. Consequently we have chosen the
optimization “schedule” described above where
we first optimize using stereo alone and turn on
shading only later.

There is another important point to note
about these results. The elevation errors in the
second row, i.e those generated using images 1,
4, and 5 with a lot of self occlusion are very close
to those of the first row, i.e. those generated us-
ing images 1, 2, and 3 with little self occlusion,
while those in the final row (using all five im-
ages) are significantly better. Furthermore, in
this particular case, the results for images 1,4
and 5 are even slightly better than those for
images 1,2 and 3 in the presence of noise be-
cause the former correspond to larger baselines.
In cther words, having the same number of im-
ages, but with significant self-occlusions, does
not hurt our procedure. However, adding new
images that contain significant self-occlusions
actually improves the results.

We now turn to real images and show that
the same properties can also be observed there.

5.2 Real Images

In Figure 9 we show the 1esult of running the
stereo ccmponent of our objective function on a
real stereo pair corresponding to the same site
as the synthetic images of Figure 1. Note that
the radiometry of the left and right images are
actually slightly different. We correct for this
by first band-passing each image by taking the
difference between the image and its gaussian
convolution. This is approximately equivalent
to replacing the simple correlation that our ob-
jective function uses by a normalized correla-
tion, but is computationally more efficient. We
then applied the optimization using exactly the
same schedule and parameters as in the syn-
thetic case, with the exception that Ag is not
reduced quite as much for the real images as
for the synthetic ones in the first step of the
procedure. Note that the recovered ridge is
even sharper than in the synthetic case. This
is because the Digital Elevation Model used to
produce the synthetic right image was actually
a slightly smoothed version of the terrain, in
which one side of the ridge is an almost verti-
cal cliff. Thus, even though we do not currently
have ground truth for the real case, the sharp-
ness of the recovered cliff, which matches what
is seen using a stereoscope, leads us to believe
that the algorithm has performed well.




Figure 9: (a,b) A stereo pair of real images of the Martin-Marietta ALV test-site used in Figure 1. (c)
Intensity error image computed using the method described in Figure 1(c) (d,e) Shaded views of the mesh
after optimization. (f) Intensity error image after optimization. Note that the ridge is now very sharp. This
corresponds accurately to the almost vertical cliff that can be seen when viewing the stereo pair with a

stereoscope.

In Figure 10 we show three triplets of images
of faces. They have been produced using the IN-
RIA three camera system [13) that provides us
with the 3 by 4 projection matrices we need to
perform our computations. In this case it is es-
sential to have more than two images to be able
to reconstruct both sides of the face because of
self-occlusions. For each triplet, we have com-
puted disparity maps corresponding to images 1
and 2 and to images 1 and 3 and combined them
to produce the depth maps shown in the right-
most column of the figure using the algorithms
described in (19, 15].

The depth maps have then been smoothed
and triangulated to produce the initial surfaces
shown in the upper left corner of Figures 11,
12, and 13. In the first row of these three fig-
ures, we show the result of the optimization
using stereo alone as we progressively decrease
the smocthness constraint and allow all three
vertex coordinates to be adjusted. Note that
for the first two triplets (Figures 11 and 12),
we recover more and more detail until the sur-

.

face eventually starts to wrinkle, without appar-
ent improvement in accuracy. The third triplet
poses an even more difficult problem: there are
strong specularities on both the forehead and
the nose that strongly violate our Lambertian
model. Because there are very few other points
that can be matched on the nose, the algorithm
latches on to these specularities and yields a
poor result.

In the bottom row of Figures 11, 12, and
13, we show our final results obtained by turn-
ing on the shading term and reoptimizing the
meshes. For these images we did not know a-
priori the light source-direction, we therefore es-
timated it by choosing the direction that min-
imizes the shading component of the objective
function given the surface optimized using only
the stereo component. In all three images, the
main features of the faces, nose, mouth and
eyes have been correctly recovered. The im-
provement is particularly striking in the case of
the face in Figure 13. The shading component
was able to achieve this result because it uses
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Figure 10: Triplets of face images and corresponding disparity maps (courtesy of INRIA).

the monocular information around the specular-
ities. The stereo component cannot take advan-
tage of the information around the specularities
because very few points are visible in at least
two images simultaneously, and because there is
little texture. Of course, the effect of the spec-
ularities has not completely disappeared (there
is indeed still a small artifact on the nose) but

has been outweighed by the surrounding infor-
mation. A more principled approach to solving
this problem would be to explicitly include a
specularity term in our shading model.

The graphs of Figure 14 depict the behav-
ior of the stereo and shading components of the
objective function for the three triplets. The
four values of the scores to the left of the thick
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Figure 11: Results for the first triplet of Figure 10. (a) Shaded view of the mesh generated by smoothing and
triangulating the computed disparity map. We use it as the starting condition for our optimization procedure.
(b,c,d) The mesh after optimization using only the stereo term, with progressively less smoothing. (e f,g)
Several views of the mesh after optimization using both stereo and shading. (h) The recovered albedo map.

dotted line, Sty to St3, correspond to the re-
sults shown in the top row of Figures 11, 12,
and 13. The fifth value, St 4+ Sk, corresponds
to the final results when shading is turned on.
These values have been scaled so that St is
equal to one for all triplets. As in the synthetic
case, when using stereo alone, the stereo com-
ponent always improves, but as the recovered
surface becomes rougher the shading term de-
grades dramatically. However, when we turn on
the shading component, the overall results im-
prove significantly, even though the stereo com-
ponent degrades slightly.

6 Summary and Conclusion

In this paper we have presented a surface recon-
struction method that uses an object-centered
representation (a triangulated mesh) to recover
geometry and reflectance properties from mul-
tiple images. It allows us to handle self-

occlusions while merging information from sev-
eral viewpoints, thereby allowing us to elimi-
nate blindspots and making the reconstruction
more robust where more than one view is avail-
able. The reconstruction process relies on both
monocular shading cues and stereoscopic cues.
We use these cues to drive an optimization pro-
cedure that takes advantage of their respective
strengths while eliminating some of their weak-
nesses.

Specifically, stereo information is very ro-
bust in textured regions but potentially unre-
liable elsewhere. We therefore use it mainly in
such areas by weighting the stereo component
most strongly for facets of the triangulation that
project into textured image areas. The compo-
nent compares the grey-levels of the points in
all of the images for which the projection of a
given point on the surface is visible, as deter-
mined using a hidden-surface algorithm. This
comparison is done for a uniform sampling of




Figure 11: Results for the first triplet of Figure 10. (a) Shaded view of the mesh generated by smoothing and
triangulating the computed disparity map. We use it as the starting condition for our optimization procedure.
(b,c,d) The mesh after optimization using only the stereo term, with progressively less smoothing. (e,f,g)
Several views of the mesh after optimization »sing both stereo and shading. (h) The recovered albedo map.

dotted line, Sty to St3, correspond to the re-
sults shown in the top row of Figures 11, 12,
and 13. The fifth value, St 4+ Sh, corresponds
to the final results when shading is turned on.
These values have been scaled so that Sig is
equal to one for all triplets. As in the synthetic
case, when using stereo alone, the stereo com-
ponent always improves, but as the recovered
surface becomes rougher the shading term de-
grades dramatically. However, when we turn on
the shading component, the overall results im-
prove significantly, even though the stereo com-
ponent degrades slightly.

6 Summary and Conclusion

In this paper we have presented a surface recon-
struction method that uses an object-centered
representation (a triangulated mesh) to recover
geometry and reflectance properties from mul-
tiple images. It allows us to handle self-

occlusions while merging information from sev-
eral viewpoints, thereby allowing us to elimi-
nate blindspots and making the reconstruction
more robust where more than one view is avail-
able. The reconstruction process relies on both
monocular shading cues and stereoscopic cues.
We use these cues to drive an optimization pro-
cedure that takes advantage of their respective
strengths while eliminating some of their weak-
nesses.

Specifically, stereo information is very ro-
bust in textured regions but potentially unre-
liable elsewhere., We therefore use it mainly in
such areas by weighting the stereo component
most strongly for facets of the triangulation that
project into textured image areas. The compo-
nent compares the grey-levels of the points in
all of the images for which the projection of a
given point on the surface is visible, as deter-
mined using a hidden-surface algorithm. This
comparison is done for a uniform sampling of




Figure 12: Results for the second triplet of Figure 10 presented in the same fashion as in Figure 11.

the surface. This method allows us to deal with
arbitrarily slanted regions and to discount oc-
cluded areas of the surface.

On the other hand, shading information is
mostly helpful in textureless areas. Thus, we
weight the shading component most strongly for
facets that project into such areas. The com-
ponent uses a new method for utilizing shad-
ing information that does not need the tra-
ditional assumption of constant albedo. In-
stead, it attempts to minimize the variation in
albedo across the surface, and can therefore deal
with both constant albedo surfaces and surfaces
whose albedo varies slowly. However, it does re-
quire the boundary conditions that are provided
by the stereo information.

We have developed a weighting scheme that
allows our system to use each source of informa-
tion where it is most appropriate. As a result,
for the large class of surfaces that roughly sat-
isfy the Lambertian model, it performs signifi-
cantly better than if it were using either source
of information alone.

Our surface model can be naturally aug-

mented to include specularities, shadows and
self-shadows. It can also support more complex
topologies, multiple resolutions and the shrink-
ing or growing of the surface of interest, though
in this paper we concentrated on a better under-
standing of the behavior of the objective func-
tion. These extensions will be the subject of
future work.
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